Numerical simulation of single-mode Richtmyer-Meshkov instability caused by high-Mach number shock wave
-
摘要: 为了研究高马赫数激波冲击下的单模界面Richtmyer-Meshkov (RM)不稳定性,特别是高马赫数激波带来的热化学非平衡效应的影响,采用基于有限体积方法的二维高温非平衡流动程序,利用自适应非结构网格模拟了空气中高马赫数激波冲击两侧温度不同的单模界面导致的RM不稳定现象。研究中涵盖了轻/重界面和重/轻界面2 种情况,涉及的激波马赫数范围分别为6~9和8~11。对比了冻结流、热非平衡流和热化学非平衡流3种气体模式下的流场演化过程,揭示了扰动增长和增长率的变化规律。通过对比扰动增长的线性理论和非线性理论,分析了初始激波马赫数和初始扰动尺度的变化对RM不稳定性的影响,同时讨论了涡量场分布和环量的演化规律。结果表明,与冻结流相比,热化学非平衡流中透射激波、反射波及界面速度明显不同,扰动振幅增长率峰值降低,界面增长率脉动减弱,界面不稳定性增长速度变慢。通过对比多种理论模型和本文的数值模拟结果,发现Zhang-Sohn模型相对于其他模型更适用于高马赫数激波作用下的单模界面RM不稳定性问题。对涡量场的研究发现,有2个较强的涡量生成区域,一个位于界面上,另一个位于透射激波波后,这同低马赫数下涡量主要在界面上生成的结论显著不同。此外,热化学非平衡流中环量的幅值大小低于冻结流中的结果,这与热化学非平衡流中扰动的增长低于冻结流的结论对应。
-
关键词:
- Richtmyer-Meshkov不稳定性 /
- 高马赫数激波 /
- 高温非平衡效应 /
- Zhang-Sohn模型
Abstract: Richtmyer-Meshkov (RM) instabilities are observed in various fields, including inertial confinement fusion, supernova explosions, and supersonic combustion engines. While considerable research has been conducted on the single-mode RM instability induced by low-Mach number shock waves, there is a notable gap in studies on the RM instability of a single-mode interface under high-Mach number shock waves. Additionally, the influence of thermo-chemical non-equilibrium effects resulting from high-Mach number shock waves remains unknown. In this study, a two-dimensional code for high-temperature non-equilibrium gas based on the finite volume method with unstructured adaptive grids was employed to simulate the single-mode RM instability caused by high-Mach number shock waves in air. In the numerical solution process, a splitting method was employed to separately solve the convective and source terms. The convective term was solved using the MUSCL-HANCOCK method for second-order space-time reconstruction and the HLL (Harten-Lax-van Leer) scheme for calculating numerical fluxes. The source term was solved using a single-step implicit time format with A-stability. Two scenarios were considered: light/heavy interface and heavy/light interface, with shock Mach numbers ranging from 6 to 9 and 8 to 11, respectively. The research compared the evolution of flow fields under three gas models: frozen gas, thermal non-equilibrium gas, and thermo-chemical non-equilibrium gas. The disturbance growth and growth rate of each gas model were presented, and the numerical results were compared with linear and nonlinear theories. The influence of the initial shock Mach number and the initial disturbance scale on RM instability was analyzed. Furthermore, the distribution of vorticity fields and the evolution of circulation were discussed. The findings reveal significant differences in thermo-chemical non-equilibrium flow compared to frozen flow, particularly in the transmission and reflection waves, as well as the interface velocity. Thermo-chemical non-equilibrium flow exhibits a decreased peak amplitude growth rate, weakened fluctuations in the interface growth rate, and a slowed-down growth of interface instability compared to frozen flow. Comparative analysis with multiple theoretical models indicates that the Zhang-Sohn model is more suitable than other models for describing single-mode interface RM instability under high-Mach number shock waves. The study of vorticity reveals two main regions with strong vorticity generation: one near the interface and the other behind the transmitted shock wave, which is notably different from RM instability induced by low-Mach number shock, where vorticity is primarily generated at the interface. Additionally, the investigation into circulation demonstrates that the amplitude of vortices in thermo-chemical non-equilibrium flow is smaller than in frozen flow, aligning with the conclusion that disturbances grow more slowly in thermo-chemical non-equilibrium flow compared to frozen flow. This study contributes valuable insights into the RM instability under high-Mach number shock waves, expanding the understanding within the RM instability research community. -
近年来,我国正在兴建的一批大型水电工程都处在西南、西北地区的崇山峻岭之中,均需进行高陡边坡和地下洞室的爆破开挖,由此导致一系列的岩石工程安全问题,特别是在爆炸荷载、地震荷载等动荷载作用下的变形和稳定问题[1-4]。因此,对岩石各种动力学参数的研究就显得更加重要,如何准确地确定现场岩石动力学参数是工程施工过程中需着重考虑的一个方面。现阶段工程中常用的岩石参数获取方法有室内实验法和原位实验法,但由于室内实验针对小尺度岩样进行研究,因而得到的也是小尺度岩样的动力学参数,由于岩体具有较为明显的尺度效应,为了将室内实验测试的小尺度岩样动力学参数的研究过渡到现场大尺度岩体,因此,现场原位实验具有不可替代的作用,然而原位实验也有周期长,费用高等缺点[5]。而通过测定爆破地震波(P、S波)在岩石中的传播速度反演岩石动力学参数的方法较为简单快捷。如何精确的判别P、S波震相初至时刻对岩石动力学参数反演工作的效率和精度有着不可忽视的影响,因此根据实测振动波形进行S波的初至时刻识别值得开展深入研究。
迄今为止,水利工程中的爆破地震波的识别研究的方法和技术直接来自于对天然地震活动的研究。对于天然地震,针对P、S波初至时刻判别方面进行了大量的研究。Baer等[6]指出P波初至时刻的自动拾取算法主要是基于监测振动信号和噪声的不同特征作为P波震相识别的判据。Stevenson等[7]首次提出利用长短时窗平均比来自动拾取P波震相初至时刻。如今发展出的P波到时自动识别方法主要有:自回归模型、AIC法、波形变化增长法、偏振分析法及长短时间平均方法等[8-10]。但在S波自动识别方面,由于P波尾波以及各种反射波相的相互干扰,以上的方法用于S波震相自动识别的效果较差。Diehl等[11]提出了用于地震层析成像的S波自动识别方法,该方法需要对振动信号做STA/LTA判定、偏振分析等处理,计算量较大,比较适合做后续分析;Baillard等[12]利用峰态特征函数和特征向量的分解拾取三分像地震信号的P、S波震相。刘希强等[13-14]提出利用振动信号在不同尺度的小波变换中偏振信息的不同来确定S波震相的小波变换方法;何先龙等[15]提出一种二次自回归模型拾取P、S波的初至时间;张楚旋等[16]采用短时平均过零率、短时能量等4个指标作为S波自动拾取的指标。
虽然学者们在天然地震领域上S波的拾取上取得了丰富的研究成果,但是与天然地震信号相比,水利工程爆破开挖产生的微震信号持续时间较短、背景噪音复杂、分布范围较小,受结构面等地质的不均匀性影响很大,导致P、S波分离不明显,致使适用于地震领域的S波识别算法在水利工程尺度下识别效果不明显。因此,对水利工程爆破开挖产生的微震信号的S波自动识别进行更深入的研究具有较为重大的意义。
本文中旨在研究根据实测爆破开挖产生的振动波形进行S波震相的快速识别,在满足安全生产精度要求的前提下,秉承信号处理上“滤波越少,算法越好”的原则[17],对原始振动数据不进行任何的滤波处理。基于其他方法已经得到的P波震相到时,在此基础上,对前人识别方法进行改进,根据P波、S波在频率、偏振方向和水平能量与总能量上的差异对S波进行精确识别。对于爆破地震波中P波震相的初至时刻识别,推荐采用Baer等[6]提出的自动识别算法。
1. 识别方法及特征函数
水利水电工程开挖爆破过程中,炸药能量的很大一部分以地震波的形式向四周传播,引起地面振动。爆破地震波在传播过程中可被分为体波和面波,其中根据传播过程中质点运动和传播方向关系,可以将体波进一步分为P波和S波,相较于P波,S波具有传播速度仅次于P波,并且其周期较长、振幅较大的特点。Diehl等[11]指出,振动信号监测仪器会最先监测到P波到达引起的振动信号,而相对于较为容易的识别出P波初至震相时刻,在S波震相识别方面,由于P波尾波信号以及各种转换波信号,如PS波的强干扰导致S波淹没在P波中难以识别。可根据P、S波周期及偏振特性的差异,对与周期差异相关的短时平均过零率及偏振特性差异相关的偏转角、偏振度及横向能量与总能量差异等参数进行分析,现分别讨论。
1.1 确定计算窗长
在对上述识别参数进行计算时,当计算窗长选取过长,上述特征参数的值变化不明显;计算窗长选取过短,则导致识别参数值的不稳定。Cichowicz等[18]提出根据P波的卓越频率确定时窗长度的方法。计算时窗长度与P波卓越频率成反比关系,具体表达式如下:
l=1fpΔt (1) 式中:l为计算窗长,Δt为仪器采样间隔时间,fp为P波的卓越频率。
Boore等[19]提出P波的卓越频率与振动波形的速度功率谱密度和相应的位移功率谱密度存在如下式所列关系:
fp=√m0/m12π (2) 式中:m0=2∫D2(f)df,m1=2∫v2(f)df,D2(f)、v2(f)分别为位移功率谱密度和速度功率谱密度。
1.2 短时平均过零率
由于P波的周期小于S波周期,在监测信号上就表现出如图 1所示的波形前后疏密不同的变化,为了更好地识别S波震相初至时刻,需对这种疏密变化进行量化。对于平稳信号来说,可以直接用周期或频率直接衡量。而对于地震信号、爆破产生的振动信号、噪声信号等非平稳信号而言,由于其周期的不稳定,则用短时平均过零率来进行度量。
振动信号单位时间内过零的次数可以定义为短时平均过零率K1,其值可以作为S波初至震相时刻拾取的指标。其定义式为:
K1=n∑i=msgn[xi+1]−sgn[xi](n−m)Δt (3) 式中:sgn[x]={1 x≥00 x<0。Δt=1/f,f为信号的采样频率;m、n为信号的点序号。
由式(3)可知,短时平均过零率K1的值与选取的时窗长短有关。关于S波的初至时刻震相,因此主要研究S波到达前后振动信号周期变化的差异。将P波初至时刻到S波初至时刻这一区间称为S-P区间,将S波震相初至时刻后(ns-np)Δt时窗内的区间,称为S′-S区间。定义公式为:
K2=ns∑i=nPsgn[xi+1]−sgn[xi](ns−np)Δt (4) K3=ns′∑i=nssgn[xi+1]−sgn[xi](ns′−ns)Δt (5) 式中:K2为S-P区间内的短时平均过零率,K3为S′-S区间内的短时平均过零率,ns′=ns+(ns-np),np、ns分别为P波初至时间和S波初至时间对应的信号点序号。
根据张楚旋等[16]对建立的微震数据库的信号研究可知,短时平均过零率与振动信号的S波震相的初至时刻存在着对应关系,定义S波初至时刻震相前后的短时平均过零率之比C1=K2/K3,计算发现,C1的取值范围大于1.2。
1.3 偏转角
确定P波初至到时后,结合Kanasewich[20]提出的偏振特性概念,选取P波到时后l长度的计算其协方差矩阵最大特征值所对应的特征向量,即P波的偏振方向。计算式如下:
M=(cov(x,x)cov(x,y)cov(x,z)cov(y,x)cov(y,y)cov(y,z)cov(z,x)cov(z,y)cov(z,z)) (6) 式中:cov(n,m)=l∑i=1(ni−ˉn)(mi−ˉm)l,n, m=x, y, z;n、m为l长度所对应的数据的均值。
P波初至时刻点为计算起点,取时窗长度为l个采样点往后开始进行逐点进行滑动,求得各个计算窗口最大特征值所对应的特征向量,并计算其与P波偏振方向的夹角即偏转角α。对偏转角α进行归一化处理得:
F2=απ/2 (7) 1.4 偏振度
P、S波具有较高的线性偏振度,而P波尾波则更多的表现为椭圆偏振的特性。Cichowicz等[18]提出直接根据实测地震振动数据求取偏振度的方法。计算公式为:
F3=(λ1−λ2)2+(λ2−λ3)2+(λ1−λ3)2(λ1+λ2+λ3)2 (8) 式中:λ1、λ2、λ3为各个数据窗对应的协方差矩阵的特征值。
1.5 横向能量与总能量比值
确定P波偏振方向L后,结合地震波的偏振特性和传播方向间的关系把原有X(水平径向)、Y(水平切向)、Z(竖直向)坐标系旋转为L(P波偏振方向)及Q、T(S波偏正方向)坐标系,转换式为:
(LQT)=(u11u12u13u21u22u23u31u32u33)(XYZ) (9) 式中:uij (j=1, 2, 3)为第i个主方向与坐标轴X、Y、Z夹角的余弦值。
水平能量与总能量的比值,即计算窗长内2个横向方向能量与3个方向总能量的比值:
F4=l∑i=1(Q2i+T2i)l∑i=1(L2i+Q2i+T2i) (10) 通过对实测波形的偏振转换,参数F4受震动波形中噪声影响较小,因此参数F4可以用来提高S波震相识别的精度。P波初至时刻、P波尾波及S波初至时刻所对应的识别参数F2、F3、F4的理论统计平均值如表 1所示。
表 1 统计平均值Table 1. Statistical averagesP波震相初至 P波尾波 S波震相初至 F2=0 0<F2<1 F2=1 F3=1 0<F3<1 F3=1 F4=0 0<F4<1 F4=1 对于实测振动数据而言,由于受P波尾波及P-S转换波的影响,特征参数F2、F3、F4的统计平均值难以精确计算。因此对于S波初至时刻判定,选取特征参数偏转角F2、偏振度F3和横向能量与总能量比值F4三者的平方积作为其判定的特征函数,即
C2=F22F23F24 (11) 特征函数C2对识别参数F2、F3、F4进行平方处理,扩大了S波与P波尾波及转换波对应特征值的数值差异。由表 1可知,识别特征函数C2值为1时所对应的时刻为S波震相初至到时。但一般来说,由于受P波尾波以及P波识别精度等因素影响,S波初至时刻对应的特征函数C2值往往不等于1。为了能够定量识别S波初至时刻,将短时横向能量值作为权重系数,S波初至时刻加权识别特征函数为:
Cw=C2√Q2(t)+T2(t) (12) S波初至时刻会使特征函数C2与横向能量Q2(t)+T2(t)急剧增大,因此加权识别特征函数值最大对应时刻即为S波震相初至时刻。对加权识别特征函数进行归一化处理得:
N=Cwmax (13) 1.6 S波初至时刻识别流程
按式(4)、(5)分别计算P-S区间(1~l)、S-S′区间(l~l+(l-1))内的短时平均过零率,然后再按照C1=K2/K3计算特征函数C1值。对S波初至时刻进行初步判定,缩小加权识别特征函数Cw的计算空间,提升此方法计算效率。根据式(7)、(8)、(10)分别计算出识别参数F2、F3、F4的值并按式(12)计算加权特征函数Cw的值,最终确定S波震相初至时间。
2. 数值模拟及对比分析
为了进一步验证上述S波识别方法的正确性, 基于LS-DYNA动力有限元软件,模拟半无限岩体中柱状药包爆破诱发的振动传播规律。计算中岩石物理力学参数及拉压损伤模型参数取值见表 2[21]。因模型具有对称性,采取1/4模型模拟岩体中单孔爆破特性。模型尺寸为10 m×9 m×20 m,单元240 304个,节点260 012个,由于炮孔直径较小,网格划分采用从炮孔到边界渐变方式剖分,炮孔附近单元最小尺寸为0.003 6 m,边界最大尺寸0.8 m,岩体采用solid 164单元模拟。炮孔直径90 mm,装药直径70 mm,孔深3 m,堵塞0.9 m,在模型顶面布置振动监测点,有限元计算模型如图 2所示。
表 2 岩体物理参数Table 2. Physical parameters of rock massρ/(kg·m-3) E/GPa ν σb/MPa 损伤参数 KⅠ/(MN·m-3/2) λ/(kg·J-1) k m 2 530 40 0.22 2 2.33×1024 7 0.92 0.000 1 图 3分别给出了爆心距为10、15 m处三向爆破振动速度时程变化曲线。由表 2所给出的岩石动力学参数,根据理论公式:
{v_{\rm{p}}} = \sqrt {\frac{{E\left( {1 - \nu } \right)}}{{\rho \left( {1 + \nu } \right)\left( {1 - 2\nu } \right)}}} \;\;\;\;\;\;\;\;{v_{\rm{s}}} = \sqrt {\frac{E}{{2\rho \left( {1 + \nu } \right)}}} (14) 式中:E为岩体动弹性模量,kPa;ν为岩体动泊松比,ρ为岩体密度,g/cm3。
可以计算出P波的传播速度为4 248 m/s,S波的传播速度为2 545 m/s。由此可以估算出不同爆心距S波的准确初至时间,如表 3所示。应用上述S波到时识别方法对以上测点进行S波初至时刻识别,将识别结果与理论到时进行对比分析。根据表 3结果,采用该方法拾取与理论初至时间相比,二者拾取S初至时刻相差不大,拾取误差小于3%,可见该方法具有较高的识别率,可以满足工程尺度的实际要求。
表 3 实验数据与理论模型结果对比Table 3. Comparison between experimental and theoretical dataR/m t/ms ε/% 实验 理论 10 3.85 3.92 1.3 15 5.90 5.89 0.3 3. 工程应用研究
3.1 工程概况
丰宁抽水蓄能电站位于中国河北省丰宁满族自治县境内,电站工程分两期开发建设, 一期工程和二期工程装机容量分别为1 800 MW,装机6台,单机容量300 MW,在电网系统中承担调峰、调频、调相和事故备用任务。利用二期工程地下厂房地质勘探洞开挖的时机和条件,进行竖直钻孔爆破实验。实测资料表明该地质勘探洞以花岗岩为主,总体质量较好,因此可以认为在本次实验范围内岩体为均质、各向同性的弹性体,实验过程中炮孔及振动监测点布置如图 4所示,采用半秒微差延期爆破,逐孔起爆。爆破设计参数见表 4,表 4中D为孔径,h为孔深,d为药卷直径,L装药长度,Lb堵塞长度,m单响药量。利用振动监测仪器得到了各个测点的振动时程曲线,利用上述方法分析实测振动波形图对S波的初至时刻进行精确识别。
表 4 竖直钻孔爆破实验参数Table 4. Parameters of blasting experiment炮孔编号 起爆位置 D/mm h/cm d/mm L/cm Lb/cm m/kg Ⅰ-1 上、底部 76 800 50 600 200 12.0 Ⅰ-2 底部 76 800 50 600 200 12.0 Ⅱ-1 中部 76 600 50 420 180 8.4 Ⅱ-2 底部 76 600 50 420 180 8.4 Ⅲ-1 中部 76 450 50 270 180 5.4 Ⅲ-2 底部 76 450 50 270 180 5.4 注:∅50 mm药卷由2节∅32 mm炸药捆绑而成。 基于《爆破安全规程》、《水电水利工程爆破安全监测规程》等规范标准开展爆破振动测试,爆破振动测试系统由三向速度检波器、信号采集与记录设备、数据处理系统3个部分组成。主要测试设备为TC-4850爆破振动智能监测仪。在实验过程中,TC-4850爆破振动智能监测仪用于监测爆破振动速度,其采样频率为8 000 Hz。结合爆破实验进行爆破振动监测,在探洞中布置爆破振动测试线,如图 4,每个测点相对于爆源具有水平径向、水平切向及垂直向3个方向,以获得水平钻孔爆破不同工况的爆破振动的传播规律。实验中,TC-4850仪器布置在图 4所示的1#、2#、4#、6#、8#及10#测点位置。
3.2 S波初至时刻识别效果
应用上述S波震相加权识别特征函数结合前文所述的识别流程对丰宁二期工程地下厂房探洞开挖实测振动数据进行S波初至时刻识别,识别结果见表 5。限于篇幅,只给出典型测点(10#测点)实测振动波形S波初至时刻的识别效果,如图 5所示。
表 5 实验S波震相初至时刻识别结果Table 5. S-wave arrival identification in experiment炮孔编号 t/ms 1# 2# 3# 4# 5# 6# Ⅰ-1 431.63 3.25 5.50 8.75 12.13 11.25 Ⅰ-2 899.50 471.13 473.13 476.50 479.88 478.63 Ⅱ-1 1 533.63 1 105.13 1 107.00 1 110.25 1 113.38 1 112.50 Ⅱ-2 1 630.88 1 202.50 1 204.25 1 207.50 1 210.13 1 209.88 Ⅲ-1 2 585.00 2 156.50 2 158.50 2 161.88 2 164.00 2 164.13 Ⅲ-2 3 054.88 2 626.38 2 628.25 2 631.63 2 634.00 633.75 从以上数值模拟分析及丰宁水电站实测波形的应用效果可知,本文中所述方法对S波震相初至时刻的识别率较高,且具有简单、快捷等优点,可以满足实际水利工程的要求。由于该方法是建立在P波已经被识别的基础上的,下面对其识别参数做进一步论述。
(1) 从操作简单快速来看,根据周期差异作为识别函数C1对S波进行初步识别速率最快,但由于P波尾波及转换波对频率的影响导致该特征函数的识别准确率较低,可用于缩小加权识别特征函数Cw计算空间,提升计算效率。
(2) 根据横向能量与总能量比值识别参数对S波震相的识别效果最优。造成该现象的主要原因是因为经过坐标系变换,把P波旋转到垂直分量(L轴),S波分别旋转到横向坐标轴Q、T方向,能够有效压制P波尾波及其他干扰信,并且特征函数C2计算取各参数平方的乘积结果作为识别判据,扩大了P波、P波尾波与S波的差异,使之更加易于识别。
4. 结论
提出一种针对实测爆破地震波S波震相初至时刻识别方法。通过对丰宁抽水蓄能电站地质勘探洞开挖现场实验实测爆破振动数据分析,可以得到以下结论:
(1) 该方法不对爆破振动信号进行任何滤波处理秉承“滤波越少,算法越好”的思想,直接利用P、S波在频率、偏转角、偏振度和横向能量与总能量比值之间的差异对实测爆破地震波S波震相初至到时进行判断,最终确定S波初至时刻。分析理论数值模拟结果表明,该方法在工程尺度下S波初至时刻识别与理论到时相差不大,误差小于3%,验证了该方法工程应用的合理性。
(2) 应用的4个判别参数能够正确的反映波形振动的特点,同时也能正确反映S波初至时刻前后振动波形的频率,偏振特性及运动方向和能量的变化。
(3) 对S波震相初至时刻识别是建立在P波到时已经被拾取的基础上,其拾取精度受P波拾别精度的影响;同时在研究过程中忽略了R波的传播及结构面等因素对S波初至时刻识别精度的影响。后期研究中需要更多的结合实例工程实测数据建立综合考虑R波等影响因素的S波初至时刻识别模型。
-
表 1 初始条件
Table 1. Initial conditions
界面类型 气体模式 Ms a0/mm 界面类型 气体模式 Ms a0/mm 轻/重界面 冻结流 6, 7, 8, 9 0.75, 7.5, 75 重/轻界面 冻结流 8, 9, 10, 11 0.75, 7.5, 75 热非平衡流 热非平衡流 热化学非平衡流 热化学非平衡流 表 2 不同马赫数非平衡距离
Table 2. Non-equilibrium distances at different Mach numbers
界面类型 Ms Leq/mm 界面类型 Ms Leq/mm 轻/重界面 6 582.5 重/轻界面 8 569.4 7 129.6 9 133.0 8 41.4 10 47.5 9 20.0 11 20.6 -
[1] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. DOI: 10.1002/cpa.3160130207. [2] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104. DOI: 10.1007/BF01015969. [3] ZHU Y J, YANG Z W, LUO K H, et al. Numerical investigation of planar shock wave impinging on spherical gas bubble with different densities [J]. Physics of Fluids, 2019, 31(5). DOI: 10.1063/1.5092317. [4] IGRA D, IGRA O. Shock wave interaction with a polygonal bubble containing two different gases, a numerical investigation [J]. Journal of Fluid Mechanics, 2020, 889: A26. DOI: 10.1017/jfm.2020.72. [5] SINGH S, BATTIATO M. Behavior of a shock-accelerated heavy cylindrical bubble under nonequilibrium conditions of diatomic and polyatomic gases [J]. Physical Review Fluids, 2021, 6(4): 044001. DOI: 10.1103/PhysRevFluids.6.044001. [6] GEORGIEVSKIY P Y, LEVIN V A, SUTYRIN O G. Interaction of a shock with elliptical gas bubbles [J]. Shock Waves, 2015, 25(4): 357–369. DOI: 10.1007/s00193-015-0557-4. [7] KITAMURA K, YUE Z, FUJIMOTO T, et al. Numerical and experimental study on the behavior of vortex rings generated by shock-bubble interaction [J]. Physics of Fluids, 2022, 34(4): 046105. DOI: 10.1063/5.0083596. [8] RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions [J]. Annual Review of Fluid Mechanics, 2011, 43: 117–140. DOI: 10.1146/annurev-fluid-122109-160744. [9] 郑纯, 何勇, 张焕好, 等. 激波诱导环形SF6气柱演化的机理 [J]. 爆炸与冲击, 2023, 43(1): 013201. DOI: 10.11883/bzycj-2022-0226.ZHENG C, HE Y, ZHANG H H, et al. On the evolution mechanism of the shock-accelerated annular SF6 cylinder [J]. Explosion and Shock Waves, 2023, 43(1): 013201. DOI: 10.11883/bzycj-2022-0226. [10] GUO X, DING J C, LUO X S, et al. Evolution of a shocked multimode interface with sharp corners [J]. Physical Review Fluids, 2018, 3(11): 114004. DOI: 10.1103/PhysRevFluids.3.114004. [11] ZABUSKY N J. Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments [J]. Annual Review of Fluid Mechanics, 1999, 31: 495–536. DOI: 10.1146/annurev.fluid.31.1.495. [12] LINDL J D, MCCRORY R L, CAMPBELL E M. Progress toward ignition and burn propagation in inertial confinement fusion [J]. Physics Today, 1992, 45(9): 32–40. DOI: 10.1063/1.881318. [13] LINDL J, LANDEN O, EDWARDS J, et al. Review of the national ignition campaign 2009–2012 [J]. Physics of Plasmas, 2014, 21(2): 020501. DOI: 10.1063/1.4865400. [14] 薛大文, 陈志华, 韩珺礼. 球形重质气体物理爆炸特性 [J]. 爆炸与冲击, 2014, 34(6): 759–763. DOI: 10.11883/1001-1455(2014)06-0759-05.XUE D W, CHEN Z H, HAN J L. Physical characteristics of circular heavy gas cloud explosion [J]. Explosion and Shock Waves, 2014, 34(6): 759–763. DOI: 10.11883/1001-1455(2014)06-0759-05. [15] RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density [J]. Proceedings of the London Mathematical Society, 1882, s1-14(1): 170–177. DOI: 10.1112/plms/s1-14.1.170. [16] TAYLOR G I. The air wave surrounding an expanding sphere [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 186(1006): 273–292. DOI: 10.1098/rspa.1946.0044. [17] MEYER K A, BLEWETT P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids [J]. Physics of Fluids, 1972, 15(5): 753–759. DOI: 10.1063/1.1693980. [18] VANDENBOOMGAERDE M, MÜGLER C, GAUTHIER S. Impulsive model for the Richtmyer-Meshkov instability [J]. Physical Review E, 1998, 58(2): 1874–1882. DOI: 10.1103/PhysRevE.58.1874. [19] ZHANG Q, SOHN S I. Nonlinear theory of unstable fluid mixing driven by shock wave [J]. Physics of Fluids, 1997, 9(4): 1106–1124. DOI: 10.1063/1.869202. [20] SADOT O, EREZ L, ALON U, et al. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability [J]. Physical Review Letters, 1998, 80(8): 1654–1657. DOI: 10.1103/PhysRevLett.80.1654. [21] DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability [J]. Physics of Fluids, 2010, 22(1): 014104. DOI: 10.1063/1.3276269. [22] ZHANG Q, GUO W X. Universality of finger growth in two-dimensional Rayleigh-Taylor and Richtmyer-Meshkov instabilities with all density ratios [J]. Journal of Fluid Mechanics, 2016, 786: 47–61. DOI: 10.1017/jfm.2015.641. [23] 欧阳良琛, 马东军, 孙德军, 等. 单模大扰动的Richtmyer-Meshkov不稳定性 [J]. 爆炸与冲击, 2008, 28(5): 407–414. DOI: 10.11883/1001-1455(2008)05-0407-08.OUYANG L C, MA D J, SUN D J, et al. High-amplitude single-mode perturbation evolution of Richtmyer-Meshkov instability [J]. Explosion and Shock Waves, 2008, 28(5): 407–414. DOI: 10.11883/1001-1455(2008)05-0407-08. [24] 杨玟, 王丽丽, 周海兵, 等. 用浮阻力模型研究Richtmyer-Meshkov不稳定性诱导混合 [J]. 爆炸与冲击, 2015, 35(3): 423–427. DOI: 10.11883/1001-1455(2015)03-0423-05.YANG M, WANG L L, ZHOU H B, et al. Study on mixing induced by Richtmyer-Meshkov instability by using buoyancy-drag model [J]. Explosion and Shock Waves, 2015, 35(3): 423–427. DOI: 10.11883/1001-1455(2015)03-0423-05. [25] BROUILLETTE M, BONAZZA R. Experiments on the Richtmyer-Meshkov instability: wall effects and wave phenomena [J]. Physics of Fluids, 1999, 11(5): 1127–1142. DOI: 10.1063/1.869983. [26] VETTER M, STURTEVANT B. Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface [J]. Shock Waves, 1995, 4(5): 247–252. DOI: 10.1007/BF01416035. [27] JONES M A, JACOBS J W. A membraneless experiment for the study of Richtmyer-Meshkov instability of a shock-accelerated gas interface [J]. Physics of Fluids, 1997, 9(10): 3078–3085. DOI: 10.1063/1.869416. [28] MANSOOR M M, DALTON S M, MARTINEZ A A, et al. The effect of initial conditions on mixing transition of the Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2020, 904: A3. DOI: 10.1017/jfm.2020.620. [29] 罗喜胜, 王显圣, 陈模军, 等. 可控肥皂膜气柱界面与激波相互作用的实验研究 [J]. 实验流体力学, 2014, 28(2): 7–13,26. DOI: 10.11729/syltlx20140015.LUO X S, WANG X S, CHEN M J, et al. Experimental study of shock interacting with well-controlled gas cylinder generated by soap film [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 7–13,26. DOI: 10.11729/syltlx20140015. [30] ZHAI Z G, SI T, LUO X S, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave [J]. Physics of Fluids, 2011, 23(8). DOI: 10.1063/1.3623272. [31] ZHAI Z G, WANG M H, SI T, et al. On the interaction of a planar shock with a light polygonal interface [J]. Journal of Fluid Mechanics, 2014, 757: 800–816. DOI: 10.1017/jfm.2014.516. [32] LI J, ZHU Y J, LUO X S. On Type VI-V transition in hypersonic double-wedge flows with thermo-chemical non-equilibrium effects [J]. Physics of Fluids, 2014, 26(8): 086104. DOI: 10.1063/1.4892819. [33] 王宏辉, 丁举春, 司廷, 等. 反射激波冲击单模界面的不稳定性实验研究 [J]. 空气动力学学报, 2022, 40(1): 33–40. DOI: 10.7638/kqdlxxb-2021.0153.WANG H H, DING J C, SI T, et al. Richtmyer-Meshkov instability of a single-mode interface with reshock [J]. Acta Aerodynamica Sinica, 2022, 40(1): 33–40. DOI: 10.7638/kqdlxxb-2021.0153. [34] LIU L L, LIANG Y, DING J C, et al. An elaborate experiment on the single-mode Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2018, 853: R2. DOI: 10.1017/jfm.2018.628. [35] 马迪, 丁举春, 罗喜胜. 重/轻单模界面的Richtmyer-Meshkov不稳定性研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(10): 104705. DOI: 10.1360/SSPMA-2020-0034.MA D, DING J C, LUO X S. Study on Richtmyer-Meshkov instability at heavy/light single-mode interface [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(10): 104705. DOI: 10.1360/SSPMA-2020-0034. [36] 刘金宏, 邹立勇, 柏劲松, 等. 激波冲击下air/SF6界面的Richtmyer-Meshkov不稳定性 [J]. 爆炸与冲击, 2011, 31(2): 135–140. DOI: 10.11883/1001-1455(2011)02-0135-06.LIU J H, ZOU L Y, BAI J S, et al. Richtmyer-Meshkov instability of shock-accelerated air/SF6 interfaces [J]. Explosion and Shock Waves, 2011, 31(2): 135–140. DOI: 10.11883/1001-1455(2011)02-0135-06. [37] PRESTRIDGE K, RIGHTLEY P M, VOROBIEFF P, et al. Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain [J]. Experiments in Fluids, 2000, 29(4): 339–346. DOI: 10.1007/s003489900091. [38] 廖深飞, 邹立勇, 刘金宏, 等. 反射激波作用重气柱的Richtmyer-Meshkov不稳定性的实验研究 [J]. 爆炸与冲击, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06.LIAO S F, ZOU L Y, LIU J H, et al. Experimental study of Richtmyer-Meshkov instability in a heavy gas cylinder interacting with reflected shock wave [J]. Explosion and Shock Waves, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06. [39] 黄熙龙, 廖深飞, 邹立勇, 等. 激波与椭圆形重气柱相互作用的PLIF实验 [J]. 爆炸与冲击, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08.HUANG X L, LIAO S F, ZOU L Y, et al. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF [J]. Explosion and Shock Waves, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08. [40] NIEDERHAUS C E, JACOBS J W. Experimental study of the Richtmyer-Meshkov instability of incompressible fluids [J]. Journal of Fluid Mechanics, 2003, 485: 243–277. DOI: 10.1017/s002211200300452x. [41] COLLINS B D, JACOBS J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface [J]. Journal of Fluid Mechanics, 2002, 464: 113–136. DOI: 10.1017/s0022112002008844. [42] WALCHLI B, THORNBER B. Reynolds number effects on the single-mode Richtmyer-Meshkov instability [J]. Physical Review E, 2017, 95(1): 013104. DOI: 10.1103/PhysRevE.95.013104. [43] BAI X, DENG X L, JIANG L. A comparative study of the single-mode Richtmyer-Meshkov instability [J]. Shock Waves, 2018, 28(4): 795–813. DOI: 10.1007/s00193-017-0764-2. [44] WONG M L, LIVESCU D, LELE S K. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with reshock [J]. Physical Review Fluids, 2019, 4(10): 104609. DOI: 10.1103/PhysRevFluids.4.104609. [45] 柏劲松, 李平, 王涛, 等. 可压缩多介质粘性流体的数值计算 [J]. 爆炸与冲击, 2007, 27(6): 515–521. DOI: 10.11883/1001-1455(2007)06-0515-07.BAI J S, LI P, WANG T, et al. Computation of compressible multi-viscosity-fluid flows [J]. Explosion and Shock Waves, 2007, 27(6): 515–521. DOI: 10.11883/1001-1455(2007)06-0515-07. [46] 张君鹏, 翟志刚. 不同强度平面激波冲击下正方形air/SF6界面演化的数值研究 [J]. 中国科学: 物理学 力学 天文学, 2016, 46(6): 064701. DOI: 10.1360/SSPMA2015-00561.ZHANG J P, ZHAI Z G. Numerical investigation on air/SF6 square block accelerated by planar shock with different strengths [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2016, 46(6): 064701. DOI: 10.1360/SSPMA2015-00561. [47] SOHN S I. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities [J]. Physical Review E, 2009, 80(5): 055302. DOI: 10.1103/PhysRevE.80.055302. [48] GROOM M, THORNBER B. Reynolds number dependence of turbulence induced by the Richtmyer-Meshkov instability using direct numerical simulations [J]. Journal of Fluid Mechanics, 2021, 908: A31. DOI: 10.1017/jfm.2020.913. [49] 张忠珍, 王继海. k-D-a-B模型和Richtmyer-Meshkov不稳定性的数值模拟 [J]. 爆炸与冲击, 1997, 17(3): 199–206.ZHANG Z Z, WANG J H. Turbulent mixing model and numerical simulation of Richtmyer-Meshkov instability [J]. Explosion and Shock Waves, 1997, 17(3): 199–206. [50] ATTAL N, RAMAPRABHU P. Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability [J]. Shock Waves, 2015, 25(4): 307–328. DOI: 10.1007/s00193-015-0571-6. [51] 陈霄, 董刚, 蒋华, 等. 多次激波诱导正弦扰动预混火焰界面失稳的数值研究 [J]. 爆炸与冲击, 2017, 37(2): 229–236. DOI: 10.11883/1001-1455(2017)02-0229-08.CHEN X, DONG G, JIANG H, et al. Numerical studies of sinusoidally premixed flame interface instability induced by multiple shock waves [J]. Explosion and Shock Waves, 2017, 37(2): 229–236. DOI: 10.11883/1001-1455(2017)02-0229-08. [52] WRIGHT C E, ABARZHI S I. Effect of adiabatic index on Richtmyer-Meshkov flows induced by strong shocks [J]. Physics of Fluids, 2021, 33(4): 046109. DOI: 10.1063/5.0041032. [53] SAMULYAK R, PRYKARPATSKYY Y. Richtmyer-Meshkov instability in liquid metal flows: influence of cavitation and magnetic fields [J]. Mathematics and Computers in Simulation, 2004, 65(4/5): 431–446. DOI: 10.1016/j.matcom.2004.01.019. [54] 郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析 [J]. 爆炸与冲击, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06.HAO P C, FENG Q J, HU X M. A numerical study of the instability of the metal shell in the implosion [J]. Explosion and Shock Waves, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06. [55] 王涛, 汪兵, 林健宇, 等. 柱形汇聚几何中内爆驱动金属界面不稳定性 [J]. 爆炸与冲击, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150.WANG T, WANG B, LIN J Y, et al. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry [J]. Explosion and Shock Waves, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150. [56] SUN P Y, DING J C, HUANG S H, et al. Microscopic Richtmyer-Meshkov instability under strong shock [J]. Physics of Fluids, 2020, 32(2). DOI: 10.1063/1.5143327. [57] DELL Z, STELLINGWERF R F, ABARZHI S I. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks [J]. Physics of Plasmas, 2015, 22(9): 092711. DOI: 10.1063/1.4931051. [58] RIKANATI A, ORON D, SADOT O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability [J]. Physical Review E, 2003, 67(2): 026307. DOI: 10.1103/PhysRevE.67.026307. [59] SAMTANEY R, MEIRON D I. Hypervelocity Richtmyer-Meshkov instability [J]. Physics of Fluids, 1997, 9(6): 1783–1803. DOI: 10.1063/1.869294. [60] ZANOTTI O, DUMBSER M. High order numerical simulations of the Richtmyer-Meshkov instability in a relativistic fluid [J]. Physics of Fluids, 2015, 27(7): 074105. DOI: 10.1063/1.4926585. [61] FURUMOTO G H, ZHONG X L, SKIBA J C. Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction [J]. Physics of Fluids, 1997, 9(1): 191–210. DOI: 10.1063/1.869162. [62] MILLIKAN R C, WHITE D R. Systematics of vibrational relaxation [J]. The Journal of Chemical Physics, 1963, 39(12): 3209–3213. DOI: 10.1063/1.1734182. [63] PARK C. Assessment of two-temperature kinetic model for ionizing air [J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233–244. DOI: 10.2514/3.28771. [64] PARK C. On convergence of computation of chemically reacting flows [C]//23rd Aerospace Sciences Meeting. Reno: AIAA, 1985: 247. DOI: 10.2514/6.1985-247. [65] HARTEN A, LAX P D, LEER B V. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws [J]. SIAM Review, 1983, 25(1): 35–61. DOI: 10.1137/1025002. [66] TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin: Springer, 1997. DOI: 10.1007/978-3-662-03490-3. [67] BRANDON D M JR. A new single-step implicit integration algorithm with A-stability and improved accuracy [J]. Simulation, 1974, 23(1): 17–29. DOI: 10.1177/003754977402300105. [68] JOHNSEN E, COLONIUS T. Implementation of WENO schemes in compressible multicomponent flow problems [J]. Journal of Computational Physics, 2006, 219(2): 715–732. DOI: 10.1016/j.jcp.2006.04.018. [69] HOLMES R L, GROVE J W, SHARP D H. Numerical investigation of Richtmyer-Meshkov instability using front tracking [J]. Journal of Fluid Mechanics, 1995, 301: 51–64. DOI: 10.1017/s002211209500379x. [70] BROUILLETTE M. The Richtmyer-Meshkov instability [J]. Annual Review of Fluid Mechanics, 2002, 34: 445–468. DOI: 10.1146/annurev.fluid.34.090101.162238. [71] COLELLA P, GLAZ H M. Efficient solution algorithms for the Riemann problem for real gases [J]. Journal of Computational Physics, 1985, 59(2): 264–289. DOI: 10.1016/0021-9991(85)90146-9. [72] MIKAELIAN K O. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers [J]. Physical Review E, 2003, 67(2): 026319. DOI: 10.1103/PhysRevE.67.026319. [73] ORON D, ARAZI L, KARTOON D, et al. Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws [J]. Physics of Plasmas, 2001, 8(6): 2883–2889. DOI: 10.1063/1.1362529. [74] GONCHAROV V N. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers [J]. Physical Review Letters, 2002, 88(13): 134502. DOI: 10.1103/PhysRevLett.88.134502. [75] ALON U, HECHT J, OFER D, et al. Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios [J]. Physical Review Letters, 1995, 74(4): 534–537. DOI: 10.1103/PhysRevLett.74.534. [76] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. Journal of Fluid Mechanics, 1987, 181: 41–76. DOI: 10.1017/s0022112087002003. [77] JACOBS J W. The dynamics of shock accelerated light and heavy gas cylinders [J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(9): 2239–2247. DOI: 10.1063/1.858562. [78] 王震, 王涛, 柏劲松, 等. 流场非均匀性对非平面激波诱导的Richtmyer-Meshkov不稳定性影响的数值研究 [J]. 爆炸与冲击, 2019, 39(4): 041407041407. DOI: 10.11883/bzycj-2018-0342.WANG Z, WANG T, BAI J S, et al. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave [J]. Explosion and Shock Waves, 2019, 39(4): 041407. DOI: 10.11883/bzycj-2018-0342. [79] NIEDERHAUS J H J, GREENOUGH J A, OAKLEY J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction [J]. Journal of Fluid Mechanics, 2008, 594: 85–124. DOI: 10.1017/s0022112007008749. 期刊类型引用(7)
1. 孔凌浩,严鹏,刘晓,周朝,张翔宇,卢文波. 爆破地震波中P波及S波初至自动识别方法. 振动与冲击. 2025(05): 253-262 . 百度学术
2. 高启栋,卢文波,冷振东,王亚琼,周海孝,张士朝. 考虑爆源特征的岩石爆破诱发地震波的波型与组分分析. 岩土力学. 2021(10): 2830-2844 . 百度学术
3. 付晓强,杨仁树,崔秀琴,刘幸,刘纪峰,雷振. 冻结立井爆破振动信号多重分形去趋势波动分析. 振动与冲击. 2020(06): 51-58 . 百度学术
4. 杨招伟,卢文波,陈明,严鹏,胡英国,刘美山,吴新霞,冷振东. 基于实测爆破振动计算岩体介质P波品质因子. 爆炸与冲击. 2020(06): 108-117 . 本站查看
5. 李新平,汪洋,许明楠,王刚,黄俊红. 时序控制断裂爆破中后爆孔的动力响应分析. 应用力学学报. 2020(06): 2513-2519+2702 . 百度学术
6. 高启栋,卢文波,杨招伟,陈明,严鹏. 垂直孔爆破诱发地震波的成分构成及演化规律. 岩石力学与工程学报. 2019(01): 18-27 . 百度学术
7. 高启栋,卢文波,杨招伟,严鹏,陈明. 水平光面爆破激发地震波的成分及衰减特征. 爆炸与冲击. 2019(08): 170-182 . 本站查看
其他类型引用(4)
-