主体结构荷载可控的新型组合式防护结构(Ⅱ):影响因素及设计理念

方秦 高矗 孔祥振 杨亚

方秦, 高矗, 孔祥振, 杨亚. 主体结构荷载可控的新型组合式防护结构(Ⅱ):影响因素及设计理念[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0463
引用本文: 方秦, 高矗, 孔祥振, 杨亚. 主体结构荷载可控的新型组合式防护结构(Ⅱ):影响因素及设计理念[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0463
FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on controllability of blast load on structure layer (Ⅱ): influence factors and design concept[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0463
Citation: FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on controllability of blast load on structure layer (Ⅱ): influence factors and design concept[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0463

主体结构荷载可控的新型组合式防护结构(Ⅱ):影响因素及设计理念

doi: 10.11883/bzycj-2023-0463
基金项目: 国家自然科学基金(52178515)
详细信息
    作者简介:

    方 秦(1962- ) ,男,教授,fangqinjs@139.com

    通讯作者:

    孔祥振(1988- ),男,副教授,ouckxz@163.com

  • 中图分类号: O382

A new composite protective structure based on controllability of blast load on structure layer (Ⅱ): influence factors and design concept

  • 摘要: 为明确泡沫混凝土厚度和强度对组合式防护结构抗爆性能的影响,充分发挥和合理利用泡沫混凝土良好的消波特性,首先通过试验及数值模拟探讨不同泡沫混凝土厚度和强度对组合式防护结构抗爆性能的影响,并分析分层梯度泡沫混凝土在爆炸波作用下的消波特性。然后将组合式防护结构与采用中粗砂为分配层的传统成层式结构进行对比分析验证其优越性,在此基础上,总结凝练出组合式防护结构的主体结构荷载可控的设计理念。结果表明,利用泡沫混凝土材料较长的屈服平台和较低的波阻抗,以泡沫混凝土作为能量调控层,通过设计泡沫混凝土强度等级(密度等级)和厚度以及采用多层梯度泡沫混凝土,可使得作用于主体结构上的爆炸荷载峰值恰为泡沫混凝土屈服强度,实现对主体结构上荷载的可控设计,有效解决了中粗砂为分配层的传统成层式结构不易控制作用于主体结构上荷载的问题。研究结果可为抗新型钻地弹的防护设计提供重要参考。
  • 图  1  0.5 m厚泡沫混凝土层沿中心轴线方向的爆炸波应力、应变峰值分布情况[1]

    Figure  1.  Peak stress and peak strain along the central axis of foam concrete layer with a thickness of 0.5 m[1]

    图  2  组合式防护结构数值模型及测点布置示意图[1]

    Figure  2.  Numerical model of composite protective structure subjected to explosion and locations of the gauge[1]

    图  3  爆炸波在不同厚度泡沫混凝土层中的传播衰减

    Figure  3.  Propagation of blast waves in foam concrete layers with different thicknesses

    图  4  不同厚度泡沫混凝土层时主体结构层测点的应力时程曲线

    Figure  4.  Stress-time histories of gauges in structural layer with different thicknesses of foam concrete layer

    图  5  试验后不同靶体损伤破坏情况的剖面图

    Figure  5.  Sectional view of post-test failure in composite protective structures with different foam concrete layers

    图  6  主体结构层上表面中心位置测点实测应力时程曲线

    Figure  6.  Tested stress-time histories of gauges at the upper surface of the structure layer

    图  7  不同靶体的遮弹层损伤云图

    Figure  7.  Numerically predicted damage of concrete shelter in composite protective structures

    图  8  数值模拟预测的不同靶体B-3-1测点的应力时程曲线

    Figure  8.  Numerically predicted stress-time histories of Gauge B-3-1 in composite protective structures

    图  9  爆炸波在不同强度的泡沫混凝土层中的传播衰减

    Figure  9.  Propagation of blast wave in foam concrete layer with different strengths

    图  10  主体结构层上表面沿径向的应力峰值分布

    Figure  10.  Peak stress distribution along the radial direction on the upper surface of the structure layer

    图  11  主体结构层能量对比

    Figure  11.  Comparison of energy in structure layer

    图  12  泡沫混凝土层能量对比

    Figure  12.  Comparison of total energy in different foam concrete layers

    图  13  爆炸波在分层梯度泡沫混凝土中的传播衰减

    Figure  13.  Propagation of blast wave in layered graded foam concrete

    图  14  不同厚度中粗砂层分配层主体结构层测点的应力时程曲线

    Figure  14.  Stress-time histories of gauges in structural layer with different thicknesses of medium-coarse sand layer

    表  1  泡沫混凝土配合比

    Table  1.   Mix proportion of foam concrete

    强度等级 设计密度/(kg·m−3) 粉煤灰/(kg·m−3) 矿渣/(kg·m−3) 硅酸钠溶液/(kg·m−3) 氢氧化钠固体/(kg·m−3) 水/(kg·m−3) 泡沫/(L·m−3)
    C1 500 202 202 188 14 72 600
    C3 900 362 362 339 25 133 406
    C5 1200 484 484 452 33 182 108
    C10 1400 564 564 528 38 213 65
    下载: 导出CSV
  • [1] 方秦, 高矗, 孔祥振, 等. 主体结构荷载可控的新型组合式防护结构(Ⅰ): 抗爆机制 [J]. 爆炸与冲击, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.

    FANG Q, GAO C, KONG X Z, et al. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism [J]. Explosion and Shock Waves, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.
    [2] 张博一, 王伟, 周威. 地下防护结构 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2021: 212–218.
    [3] 颜海春, 艾德武, 袁正如, 等. 空气隔层成层式结构抗常规武器设计荷载分析 [J]. 地下空间与工程学报, 2012, 8(4): 802–806,856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.

    YAN H C, AI D W, YUAN Z R, et al. On the load analysis of resistance to conventional weapons under the circumstances of air buffer application [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 802–806,856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.
    [4] 颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.

    YAN H C, FANG Q, CHEN L. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J]. Journal of PLA University of Science and Technology, 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.
    [5] ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122(10): 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016.
    [6] ZHANG J H, CHEN L, WU H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading [J]. Composite Structures, 2020, 241(6): 110859. DOI: 10.1016/j.compstruct.2019.04.031.
    [7] ZHANG J H, ZHANG Y D, FAN J Y, et al. Mesoscopic investigation of layered graded metallic foams under dynamic compaction [J]. Advances in Structural Engineering, 2018, 21(14): 2081–2098. DOI: 10.1177/1369433218766941.
    [8] GARDNER N, WANG E H, SHUKLA A. Performance of functionally graded sandwich composite beams under shock wave loading [J]. Composite Structures, 2012, 94(5): 1755–1770. DOI: 10.1016/j.compstruct.2011.12.006.
    [9] WANG E H, GARDNER N, SHUKLA A. The blast resistance of sandwich composites with stepwise graded cores [J]. International Journal of Solids and Structures, 2009, 46(18/19): 3492–3502. DOI: 10.1016/j.ijsolstr.2009.06.004.
    [10] GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4/5): 979–982. DOI: 10.1016/j.matlet.2006.06.033.
    [11] ZENG H B, PATTOFATTO S. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680–688. DOI: 10.1016/j.ijmecsci.2009.11.012.
    [12] 郝逸飞, 梁恺康, 杨光照. 一种常温养护保温隔热材料的制备方法[P]. 天津市: CN114149219B, 2022-04-26.
    [13] NIAN W, SUBRAMANIAM K, ANDREOPOULOS Y. Experimental investigation on blast response of cellular concrete [J]. International Journal of Impact Engineering, 2016, 96: 105–115. DOI: 10.1016/j.ijimpeng.2016.05.021. DOI: 10.1016/j.ijimpeng.2016.05.021.
    [14] 泡沫混凝土规范: JG/T266-2011 [S]. 北京: 中国标准出版社, 2011: 2–11.
    [15] LAINE L, SANDVIK A. Derivation of mechanical properties for sand [C]//4th Asian-Pacific conference on Shock and Impact Loads on Structures. Singapore, 2001: 1–8.
    [16] 杨亚, 孔祥振, 方秦, 等. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法 [J]. 爆炸与冲击, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.

    YANG Y, KONG X Z, FANG Q, et al. A calculation method for the minimum thickness of a foam concrete distribution layer under blast load [J]. Explosion And Shock Waves, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  28
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-23
  • 修回日期:  2024-03-08
  • 网络出版日期:  2024-03-12

目录

    /

    返回文章
    返回