Experimental research on the free surface effect of shock wave and bubble behavior of small yield underwater explosion
-
摘要: 为研究自由面对水下爆炸冲击波、气泡行为和由气泡与自由面强耦合作用形成水幕的影响,设计了小当量PETN球形装药近水面水下爆炸实验系统,开展了5种典型工况水下爆炸实验,采用高速相机和压力传感器分别获取了气泡和水幕形态演变过程、水中测点压力时间历程。根据冲击波、气泡时序特征分别分析了其自由面效应,冲击波主要变现为截断效应,气泡与自由面相互作用表现为复杂的气泡形态演化和水幕生成及演化,通过高速图像结合压力时间历程分析,进一步从气泡水平半径、中心偏移位移和水幕最大高度定量分析气泡自由面效应。结果表明:随着爆深的减小,水面反射波程差减小,自由面对冲击波的截断效应增强,即冲击波正压作用时间减小,实测截断时间差与计算时间差的最大偏差为6.81%;随着比例爆深减小,自由面效应加剧,气泡和水幕形态趋于复杂化;气泡由球形演变为卵形以及更加复杂的形态,水幕由单一的水冢,逐渐转变为水冢-顶端飞溅水柱、水冢-垂直喷射水柱-水射流等复杂形态;气泡水平半径从第2个脉动周期不再保持脉动特征过渡到第1个脉动周期,甚至到第1次气泡膨胀阶段;气泡水平半径中心偏移位移呈现出两段式变化规律,在前期偏移位移快速增加阶段(偏移位移范围0~20 mm),4种比例爆深偏移位移呈现出近似线性变化规律,线性系数相近。Abstract: In order to study the effects of free surface on underwater explosion shock wave, bubble behavior and water plumes formed by strong coupling between bubble and free surface, a small yield pentaerythritol tetranitrate (PETN) spherical charge near water surface underwater explosion experimental system was designed, five typical conditions of underwater explosion experiments were carried out, and the evolution process of bubble and water plumes, as well as time history of pressure at the gauge were obtained by high-speed camera and pressure sensor respectively. Based on the characteristics of shock waves and bubble time series, their free surface effects were analyzed separately. The shock wave mainly manifests as truncation effects. The interaction between bubble and free surface is manifested as complex bubble evolution and water plume generation and evolution, which were mainly analyzed through high-speed images, appropriately combined with pressure values. The free surface effects of the bubble were further quantitatively analyzed by the horizontal radius of the bubble, the offset displacement of the bubble, and the maximum height of water plume. The results show that with the decrease of the detonation depth , the difference of the surface reflection wave path decreases, and the truncation effect of the free surface on shock wave increases, that is, the time of the positive pressure of shock wave decreases, and the maximum deviation between the measured truncation time difference and the calculated time difference is 6.81%. With the decrease of the scaled detonation depth, the free surface effects increase, and the shapes of bubble and water plumes become more complicated. The bubble evolves from a sphere to an oval shape, even more complex shapes. The water plume gradually changes from a single water spike to a complex form such as a water spike-top splash column, a water spike-vertical jet column-water jet, etc. The change of the horizontal radius of the bubble no longer retain pulsation characteristics from the second pulsation period to the first pulsation period and even to the first bubble expansion stage. The offset displacement of the center of the bubble’s horizontal radius shows a two-stage variation law, and in the early rapidly-increasing stage (0–20 mm), the offset displacements at 4 scaled detonation depths show a linear variation law, and the linear coefficients are close.
-
Key words:
- underwater explosion /
- shock wave /
- bubble behavior /
- free surface effect
-
武器爆炸荷载是地下防护结构设计中必须考虑的重要荷载。爆炸荷载作用下,结构变形受到周围岩石的约束,爆炸冲击波在岩石与结构中反复传播,动力特性复杂,因此确定结构动荷载极为困难[1]。考虑爆炸引起的围岩与被覆结构的动力相互作用,可以准确掌握作用在结构上的荷载特性,对于合理设计被覆结构、完善防护结构设计理论具有重要意义。
国外的许多学者对围岩与结构的静力相互作用理论开展了大量有价值的研究[2-3],国内的孙钧等[4]也在此方面取得了卓越的成绩。然而,到目前为止关于动力相互作用的研究成果相对较少,曹志远等[5-7]、房营光等[8-9]对岩土介质与地下结构的动力相互作用进行了系统研究,赵瑜等[10]通过现场实验对隧道围岩与支护结构相互作用的动力学特性进行了研究。由于赋存环境和爆炸荷载的特殊性,爆炸作用下围岩与结构的动力相互作用规律还不明确[11],为此本文中采用数值模拟方法,结合现场监测数据验证,对围岩与结构的破坏进行分析,以期获得围岩与结构的动力相互作用规律。
1. 围岩与结构的动力相互作用分析
掌握地下防护工程在战时武器爆炸作用下的动荷载是确定结构的动变位及动内力的关键,此时必须考虑围岩与结构的动力相互作用,一般采用波动理论进行分析。
对于岩土中的结构,其弹性极限σs较小,质点运动速度可近似取为:
vh=σsc0ρ+ph−σsc1ρ≈phc1ρ (1) 式中:vh为质点速度,ρ为质点密度,ph为土中压缩波压力,c0和c1分别为土壤的弹性和塑性波速。
当压缩波作用于结构(可视为运动刚体)时,假设界面处的应力和速度在加载过程中保持连续,结构表面的运动速度为v,则结构表面上的相互作用力pj为:
pj=2ph−ρc1v (2) 式(2)对土中结构动荷载的计算误差较小,本文中将通过数值模拟验证式(2)在计算岩石中结构动荷载的适用性。
2. 数值模拟工况和参数
2.1 模型与参数
数值模拟背景为某工程。该工程为直墙拱结构,最大埋深62.57 m,岩性以白云岩为主,模拟段岩体以Ⅳ类围岩为主体,隧道内轮廓跨度为14.5 m,高度为5.0 m。为了研究围岩与被覆结构的动力相互作用,模拟跨度(l)的范围为14~40 m,直墙高2.0 m,验证模拟中拱高(f)为3.0 m,后期模拟中拱高为3.7 m。锚杆采用直径为22 mm的早强砂浆锚杆,被覆结构为厚50 cm的C40混凝土,混凝土内配置直径为18 mm的钢筋。具体参数见表 1,其中E为弹性模量,ν为泊松比,fc为抗压强度,ft为抗拉强度,εu为极限压应变。
表 1 材料参数Table 1. Material parameters材料 ρ/(kg·m-3) E/GPa ν fc/MPa εu ft/MPa 白云岩 2 500 34.0 0.31 83.0 0.003 0 2.45 混凝土 2 400 32.5 0.20 26.8 0.003 2 2.39 钢筋 7 850 200.0 0.27 400.0 6.750 0 400.00 模拟炸药为TNT炸药,垂直拱顶集中装药,质量为101.875 kg,中心起爆。炸药参数如表 2所示,其中D为爆速,A、B、R1、R2、ω为炸药JWL状态方程参数,E0为初始内能,pCJ为爆轰压力。应用ANSYS/LS-DYNA有限元非线性动力分析程序,采用流-固耦合算法[12],进行了多次数值模拟。数值模拟模型及单元划分见图 1和图 2,其中图 1中的黄色区域为锚杆加固围岩。为了模拟无限大岩体,在侧面和底面施加无反射边界,钢筋采用梁单元,混凝土、炸药和岩石采用实体单元。TNT炸药采用LS-DYNA中的高能炸药本构关系*Mat_High_Explosive_Burn和状态方程*EOS_JWL[12]模拟。岩石、锚杆和钢筋采用*Mat_Plastic_Kinematic(双线性硬化弹塑性)模型模拟,即材料屈服后,沿线性硬化。混凝土采用Johnson-Holmquist-Concrete材料模型模拟。该模型综合考虑了大应变、高应变率和高压效应,并且考虑了损伤及损伤积累,是一种适合模拟爆炸冲击作用下的混凝土的动态本构模型。
表 2 炸药材料参数Table 2. Material parameter of explosiveρ/(kg·m-3) D/(m·s-1) A/GPa B/GPa R1 R2 ω E0/GPa pCJ/GPa 930 3 200 371 7.43 4.15 0.95 0.3 7.0 18.5 2.2 数值模拟验证
由于爆炸荷载具有破坏性,因此采用爆破开挖监测数据进行验证。首先对工程开挖进行相同材料、单元和算法的数值模拟;然后保持开挖后的应力状态,建立被覆模型,将数值模拟得到的拱顶位移与现场测量的拱顶位移进行对比,如图 3所示。由于模拟时未考虑围岩的应力释放,因此数值模拟得到的拱顶位移偏大,但是从整体上看模拟结果与工程现场监测数据基本一致,说明材料模型和参数选取合理,可以用于后续模拟研究。如图 4所示,炸药爆炸后,应力波无反射地向外传播,说明无反射边界施加正确,可以模拟无限大岩体。
3. 模拟结果分析
3.1 围岩与结构的动力相互作用
在距锚杆加固围岩1~10 m的垂直爆距(d)条件下,对跨度(l)为14 m的地下拱形结构进行模拟。当爆距为1 m时,按照式(2),取被覆拱顶单元21,根据一维波动理论,其入射波从加固围岩传入,塑性波波速c1与入射质点的应力-应变曲线斜率有关,本模拟中采用双线性硬化模型,塑性硬化段斜率E1取0.1E,由应力-应变曲线斜率和岩石密度,可求得塑性波波速为常数,即:
c1=√1ρdσdε=√E1ρ=1166.2m/s (3) 模拟中入射波的冲击压力见图 5。被覆结构的运动速度见图 6,可见结构的整体运动速度很小,因此可忽略不计。拱顶压力变化曲线如图 7所示。取最大冲击压力和最大运动速度,由式(2)计算得到拱顶的最大压力动载为143 MPa,与图 7所示的模拟值121 MPa相比,相对误差为17.9%。
表 3列出了当爆距和结构跨度变化时由式(2)得到的最大动力相互作用荷载计算结果与模拟结果的对比。由表 3可见:当跨度和爆距都较小时,由式(2)得到的最大动力相互作用荷载的计算精度较高,跨度为15 m、爆距为1 m时的相对误差只有17.2%,且计算值比模拟值偏大;随着爆距的增加,计算精度逐渐下降,计算值小于模拟值,到7 m爆距时,相对误差达到78.9%。公式计算结果显示,随着爆距的增大,最大动力相互作用荷载不断减小;而模拟结果表明,当爆距增大到某值时,最大动力相互作用荷载最大。从表 3还可以看出,当跨度从14 m增大到40 m时,计算精度逐渐降低,计算结果与模拟结果的相对偏差随着跨度的增加而增大。相对偏差较大的原因在于:在爆炸荷载作用下,围岩具有自承载能力,围岩的变形速度与结构的变形速度不一致;爆距不同,岩石坍塌情况不同,围岩与结构的动力相互作用机理更复杂。综合以上分析可知,式(2)在计算岩石与结构的动力相互作用时,只适合小跨度结构的近距离爆炸情况。
表 3 动力相互作用荷载计算结果与模拟结果的对比Table 3. Comparison of experimental and simulation of dynamic interaction loadl/m d/m p/MPa 相对误差/% 计算 模拟 14 1 142.9 121.2 17.9 14 2 156.5 197.1 -20.6 14 3 186.5 317.1 -41.2 14 4 201.4 320.5 -37.1 14 5 90.9 314.5 -71.1 14 6 63.1 266.5 -76.3 14 7 38.8 183.8 -78.9 15 1 138.9 118.6 17.2 24 1 140.8 105.7 33.3 40 1 135.5 100.1 35.4 3.2 围岩与结构的动力响应分析
当拱跨度为14 m、装药距锚杆加固围岩1 m时,装药起爆后,最大主拉应力在冲击波的挤压作用下迅速增大至峰值(见图 8),拱顶混凝土主拉应力大于抗拉强度,塑性变形较大,有效塑性应变持续增大(见图 9),拱顶混凝土破坏;在距拱顶1/2弧长处,拱肩与围岩的相互作用力最大;直墙顶部627单元的峰值压力为拱肩峰值压力的1/2左右,但是有效塑性应变较小,直墙根部混凝土未进入塑性阶段,混凝土的损伤破坏较轻。
在距拱顶0.5~4.5 m的弧长范围内,最大主拉应力迅速增大到峰值后,随着距拱顶距离的增大而逐渐衰减;但是在距拱顶4.5 m弧长处,最大主拉应力突然增大,并出现第2个峰值(第1个主拉应力峰值出现在距拱顶1/2弧长即单元494处,第2个峰值出现在单元500处)。在距拱顶1/4~3/4弧长范围内,最大主拉应力最大,变化趋势为先增大后减小,且变化幅值不大。拱肩围岩与被覆结构的动力相互作用最显著。整个拱的最大主拉应力均超出混凝土抗拉强度的10倍以上,根据最大拉应力破坏准则,混凝土已发生受拉破坏。
由图 10可见:拱顶钢筋的主拉应力超过其抗拉强度,钢筋已经屈服;而拱肩和直墙根部钢筋的应力还很小。由以上分析可见,近距离爆炸时,围岩与被覆结构在距拱顶1/4~3/4弧度处的相互作用力最大,拱顶支护结构发生局部破坏,整个拱的混凝土均受拉开裂。
3.3 相互作用力的变化规律分析
由图 11可见,拱顶和拱肩处的压力峰值有滞后现象,拱顶压力的第5峰值和拱肩压力的第2峰值明显大于其第1峰值。这是由于爆距增大,拱顶岩石破碎坍塌,从而导致压力突增。在爆距低于4 m的条件下,随着爆距的增大,由于被覆结构承担破碎岩石重量,拱顶处的相互作用力将逐渐增大;爆距为4 m时拱顶围岩与被覆结构的动力相互作用最显著;随着爆距的继续增大,围岩自承载能力增强,相互作用力随着爆距的增大而逐渐减小。最大主拉应力在爆距为2~4 m时有增大的趋势,然后随爆距的继续增大而逐渐衰减,说明前面的分析正确。
当结构跨度为14 m时,最大相互作用力、混凝土最小主应力、拱顶钢筋最小主应力的变化规律见图 12、图 13和图 14。当爆距为9 m时,钢筋主应力为347.21 MPa,小于屈服强度400 MPa,钢筋未屈服,此时拱顶、拱肩和直墙根部混凝土的最大主拉应力依然超出其抗拉强度,说明被覆结构未发生拱顶局部破坏,但爆炸震动依然引起混凝土开裂。
图 15和图 16显示了爆距为1 m、跨度为14~25 m时混凝土与围岩的最大相互作用力以及混凝土最小主应力变化规律。从图 15和图 16可以看出,当爆距为1 m、结构跨度由14 m增大到25 m时,拱顶围岩与结构的相互作用力和最大主拉应力逐渐增大,且增幅较快,拱肩和拱脚处的相互作用力和最大主拉应力均随着跨度的增加逐渐减小。拱肩处的相互作用力和主拉应力的降低速度较低,随跨度的增加逐渐趋于定值,说明小跨度结构在近距离爆炸时,整个结构震动明显,大跨度结构的拱顶将发生局部破坏。
4. 结论
(1) 由于岩石的自承载能力,采用动载计算公式计算岩石与结构的动力相互作用时,对于小跨度、近距离爆炸情况较为适用,而对于跨度和爆距较大的情况,计算误差很大,计算结果偏小;
(2) 对于跨度为14 m的地下结构,在装药质量为101.875 kg、爆距为1~9 m的垂直爆炸下,拱顶钢筋屈服,支护结构发生了拱顶局部破坏,但是整个支护结构中混凝土的最大主拉应力均超出混凝土的抗拉强度,说明爆炸震动会引起整体结构混凝土开裂;
(3) 围岩与被覆结构的相互作用力在爆距为4 m时达到最大,可以作为确定最大荷载的依据;不同跨度、不同爆距被覆结构在近距离爆炸时的最大相互作用力及最大主拉应力变化规律显示,跨度越大,拱顶围岩与支护结构的相互作用力越大,结构可能由整体破坏转为局部破坏。
-
表 1 实验工况
Table 1. Experimental working conditions
实验 当量W/g 水深/mm d/mm Rm/mm γ 1 1 900 380 155.1 2.450 2 1 735 215 155.9 1.379 3 1 670 150 156.2 0.960 4 1 567 47 156.8 0.300 5 1 547 27 156.9 0.172 表 2 截断时间差分析
Table 2. Analysis of truncated time difference
实验 d/mm 峰值时刻/ms 截断压力时刻/ms 截断时间差/ms 水面反射波程差/mm 由波程差计算截断时间差/ms 截断时间测量与计算的误差/% 2 215 0.1512 0.3207 0.1695 238.1 0.1587 6.81 3 150 0.1504 0.2392 0.0888 132.7 0.0884 0.40 4 47 0.1525 0.1638 0.0113 16.8 0.0112 1.05 -
[1] 汪玉, 张磊, 史少华, 等. 舰船水下非接触爆炸抗冲击技术综述 [J]. 科技导报, 2009, 27(14): 19–22. DOI: 10.3321/j.issn:1000-7857.2009.14.004.WANG Y, ZHANG L, SHI S H, et al. Review of shock-resistance technology of naval ship for underwater non-contact explosion [J]. Science & Technology Review, 2009, 27(14): 19–22. DOI: 10.3321/j.issn:1000-7857.2009.14.004. [2] HIGDON C E. Water barrier ship self-defense concept: ADA 294929 [R]. USA: Naval Surface Warfare Center, 1994. [3] 王高辉, 张社荣, 卢文波. 近边界面的水下爆炸冲击波传播特性及气穴效应 [J]. 水利学报, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20150035.WANG G H, ZHANG S R, LU W B. The influence of boundaries on the shock wave propagation characteristics and cavitation effects of underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20150035. [4] 崔杰, 杨文山, 李世铭, 等. 近自由面水下爆炸冲击波切断效应研究 [J]. 船舶力学, 2012, 16(5): 465–471. DOI: 10.3969/j.issn.1007-7294.2012.05.001.CUI J, YANG W S, LI S M, et al. Research on the cutoff effect of shock wave induced by underwater explosion near free surface [J]. Journal of Ship Mechanics, 2012, 16(5): 465–471. DOI: 10.3969/j.issn.1007-7294.2012.05.001. [5] 张鹏翔, 顾文彬, 叶序双. 浅层水中爆炸冲击波切断现象浅探 [J]. 爆炸与冲击, 2002, 22(3): 221–228. DOI: 10.3321/j.issn:1001-1455.2002.03.006.ZHANG P X, GU W B, YE X S. Discussions of blasting shock waves cutoff in shallow-layer water [J]. Explosion and Shock Waves, 2002, 22(3): 221–228. DOI: 10.3321/j.issn:1001-1455.2002.03.006. [6] 高建华, 陆林, 何洋扬. 浅水中爆炸及其破坏效应[M]. 北京: 国防工业出版社, 2010: 21–24. [7] 郅斌伟, 张志江, 李健, 等. 近水面水下爆炸水柱效应研究 [J]. 北京理工大学学报, 2009, 29(1): 5–8.ZHI B W, ZHANG Z J, LI J, et al. A study on water columns produced by near water surface explosion [J]. Transactions of Beijing Institute of Technology, 2009, 29(1): 5–8. [8] 文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.WEN Y B, HU L L, QIN J, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion [J]. Explosion and Shock Waves, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206. [9] 那立民, 古滨, 孙波, 等. 近水面爆炸气泡——自由面动态耦合演化特征研究 [J]. 兵器装备工程学报, 2021, 42(1): 185–193. DOI: 10.11809/bqzbgcxb2021.01.034.NA L M, GU B, SUN B, et al. Research on dynamic evolving characteristic of underwater explosion bubble coupling with free surface under shallow water [J]. Journal of Ordance Equipment Engineering, 2021, 42(1): 185–193. DOI: 10.11809/bqzbgcxb2021.01.034. [10] 董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580.DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580. [11] 陈莹玉, 姚熊亮. 近水面水下爆炸气泡强耦合运动特性研究 [J]. 中国造船, 2016, 57(3): 65–71. DOI: 10.3969/j.issn.1000-4882.2016.03.008.CHEN Y Y, YAO X L. Dynamics of underwater explosion bubble near free surface [J]. Shipbuilding of China, 2016, 57(3): 65–71. DOI: 10.3969/j.issn.1000-4882.2016.03.008. [12] 李健, 荣吉利, 项大林. 近自由面水下爆炸气泡运动的数值计算研究 [J]. 工程力学, 2011, 28(6): 200–205. DOI: 10.13465/j.cnki.jvs.2014.15.035.LI J, RONG J L, XIANG D L. Numerical study of bubble motion by underwater explosion near free surface [J]. Engineering Mechanics, 2011, 28(6): 200–205. DOI: 10.13465/j.cnki.jvs.2014.15.035. [13] 张阿漫, 王超, 王诗平, 等. 气泡与自由液面相互作用的实验研究 [J]. 物理学报, 2012, 61(8): 084701. DOI: 10.7498/aps.61.084701.ZHANG A M, WANG C, WANG S P, et al. Experimental study of interaction between bubble and free surface [J]. Acta Physica Sinica, 2012, 61(8): 084701. DOI: 10.7498/aps.61.084701. [14] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究 [J]. 物理学报, 2013, 62(12): 124704. DOI: 10.7498/aps.62.124704.NI B Y, LI S, ZHANG A M. Jet splitting after bubble breakup at the free surface [J]. Acta Physica Sinica, 2013, 62(12): 124704. DOI: 10.7498/aps.62.124704. [15] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究 [J]. 物理学报, 2013, 62(19): 194703. DOI: 10.7498/aps.62.194703.LI S, ZHAN A M, WANG S P. Experimental and numerical studies on “crown” spike generated by a bubble near free-surface [J]. Acta Physica Sinica, 2013, 62(19): 194703. DOI: 10.7498/aps.62.194703. [16] 李梅, 王树山, 马峰. 爆炸水幕高度变化规律实验研究 [J]. 北京理工大学学报, 2012, 32(8): 776–780. DOI: 10.15918/j.tbit1001-0645.2012.08.003.LI M, WANG S S, MA F. Experimental research on height variation of explosion plumes [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 776–780. DOI: 10.15918/j.tbit1001-0645.2012.08.003. [17] 李梅, 魏继锋, 王树山, 等. 深水域近水面水下爆炸水柱形态及演变实验研究 [J]. 高压物理学报, 2013, 27(1): 63–68. DOI: 10.11858/gywlxb.2013.01.009.LI M, WEI J F, WANG S S, et al. Experimental study on shape and evolution of water column caused by near surface explosion in deep water area [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 63–68. DOI: 10.11858/gywlxb.2013.01.009. [18] 李梅, 王树山, 魏继锋, 等. 近水面水下爆炸水柱形成实验研究 [J]. 船舶力学, 2013, 17(11): 1229–1235. DOI: 10.3969/j.issn.1007-7294.2013.11.002.LI M, WANG S S, WEI J F, et al. Experimental study on water columns produced by near surface underwater explosion [J]. Journal of Ship Mechanics, 2013, 17(11): 1229–1235. DOI: 10.3969/j.issn.1007-7294.2013.11.002. [19] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究 [J]. 物理学报, 2014, 63(19): 194703. DOI: 10.7498/aps.63.194703.WANG S S, LI M, MA F. Dynamics of the interaction between explosion bubble and free surface [J]. Acta Physica Sinica, 2014, 63(19): 194703. DOI: 10.7498/aps.63.194703. [20] 王占江. 岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D]. 长沙: 国防科学技术大学, 2003: 4–13. [21] 卢强, 王占江, 朱玉荣, 等. 花岗岩中实测球面波粒子速度的时域和频域分析 [J]. 现代应用物理, 2018, 9(4): 040104. DOI: 10.12061/j.issn.2095-6223.2018.040104.LU Q, WANG Z J, ZHU Y R, et al. Analytical methods in time and frequency domains for the measured particle velocity of spherical stress wave in granite [J]. Modern Applied Physics, 2018, 9(4): 040104. DOI: 10.12061/j.issn.2095-6223.2018.040104. [22] 郭权势, 卢强, 方厚林, 等. 基于光学法水下爆炸流场压强测量与分析 [J]. 现代应用物理, 2024, 15(2): 021002.GUO Q S, LU Q, FANG H L, et al. Pressure measurement and analysis of underwater explosion flow field based on optical method [J]. Modern Applied Physics, 2024, 15(2): 021002. [23] 张颖, 周刚. 小当量水下爆炸实验研究[C]//第七届全国爆轰学术会议文集. 北京: 北京理工大学, 2006: 222–227. [24] 汪斌, 王彦平, 张远平. 有限水域气泡脉动实验方法研究 [J]. 火炸药学报, 2008, 31(3): 32–35. DOI: 10.14077/j.issn.1007-7812.2008.03.022.WANG B, WANG Y P, ZHANG Y P. A method of studying bubble pulses in a conf ined water area [J]. Chinese Journal of Explosives & Propellants, 2008, 31(3): 32–35. DOI: 10.14077/j.issn.1007-7812.2008.03.022. [25] COLE R H. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等译. 北京: 国防工业出版社, 1960: 162–165. -