不同风化程度花岗岩的动态力学特性及抗侵彻性能

杨慧 王可慧 周刚 李明 吴海军 戴湘晖 段建

杨慧, 王可慧, 周刚, 李明, 吴海军, 戴湘晖, 段建. 不同风化程度花岗岩的动态力学特性及抗侵彻性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0017
引用本文: 杨慧, 王可慧, 周刚, 李明, 吴海军, 戴湘晖, 段建. 不同风化程度花岗岩的动态力学特性及抗侵彻性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0017
YANG Hui, WANG Kehui, ZHOU Gang, LI Ming, WU Haijun, DAI Xianghui, DUAN Jian. Dynamic mechanical properties and anti-penetration performance of granite with different weathering degrees[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0017
Citation: YANG Hui, WANG Kehui, ZHOU Gang, LI Ming, WU Haijun, DAI Xianghui, DUAN Jian. Dynamic mechanical properties and anti-penetration performance of granite with different weathering degrees[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0017

不同风化程度花岗岩的动态力学特性及抗侵彻性能

doi: 10.11883/bzycj-2024-0017
详细信息
    作者简介:

    杨 慧(1989- ),女,硕士,工程师,yanghui@nint.ac.cn

    通讯作者:

    周 刚(1964- ),男,博士,研究员,博士生导师,中国工程院院士, springaround@163.com

  • 中图分类号: O347.3

Dynamic mechanical properties and anti-penetration performance of granite with different weathering degrees

  • 摘要: 风化会使岩石材料孔隙发育,严重影响其工程性能,研究风化作用对花岗岩力学特性及抗侵彻性能的影响,对侵彻战斗部毁伤效能评估及地下工程防护能力分析具有重要意义。选用两种不同风化程度的花岗岩为研究对象,基于试验法系统分析其物理特性、静/动态压缩性能及抗侵彻性能的差异。结果表明:风化作用会造成花岗岩中黑云母和斜长石含量降低,孔隙率增加、内部组织变松散,缺陷加剧;风化作用将导致花岗岩抗压强度劣化、应变率效应降低,破坏模式从脆性破坏向弱剪切破坏转变;三轴围压作用下,两种花岗岩的静、动态抗压强度随围压的增大显著提升,且中风化花岗岩的抗压强度对围压的作用更敏感;高速(873~1040 m/s)侵彻条件下,两种风化花岗岩的抗侵彻性能差异较小,无量纲侵深不超过3倍弹长,岩石靶中不存在明显的侵彻弹道区,但有明显的压碎区,压碎区长度约为弹径的5~8倍。
  • 图  1  不同风化程度花岗岩试样及矿物组成

    Figure  1.  Granite specimens and mineral composition with different weathering degrees

    图  2  不同风化程度花岗岩的细微观结构图像

    Figure  2.  Microstructure images of granite with different weathering degrees

    图  3  花岗岩静态单轴压缩试验

    Figure  3.  Static uniaxial compression test of granite

    图  4  花岗岩静态三轴围压试验

    Figure  4.  Static triaxial confining pressure test of granite

    图  5  分离式霍普金森压杆试验装置

    Figure  5.  SHPB test system

    图  6  SHPB试验系统中的围压装置

    Figure  6.  Confining pressure device of SHPB system

    图  7  试验弹体结构图

    Figure  7.  Scheme of projectiles

    图  8  试验布局示意图

    Figure  8.  Test arrangement diagram

    图  9  弹体侵彻花岗岩靶过程

    Figure  9.  Process of projectile penetration into granite target

    图  10  加载速率v对花岗岩抗压强度σc及弹性模量Ec的影响分析

    Figure  10.  Effect of loading rate on the static compression strength and elastic modulus of granite

    图  11  不同加载速率下单轴压缩试验后的花岗岩试样

    Figure  11.  Granite specimens after static compression test at different loading rates

    图  12  花岗岩试样在不同围压下的典型应力-应变曲线

    Figure  12.  Typical stress-strain curves of granite under different confining pressures

    图  13  不同花岗岩试样在不同围压下的试验结果

    Figure  13.  Test results of compression strength for weathered granite under different confining pressures

    图  14  花岗岩试样在不同围压下的破坏特征

    Figure  14.  Fracture characteristics of granite under different confining pressures

    图  15  花岗岩试样在不同加载条件下的应力-应变曲线

    Figure  15.  Stress-strain curves of granite under different loading conditions

    图  16  花岗岩试样的应变率效应曲线

    Figure  16.  Strain rate effect curves of granite

    图  17  花岗岩试样在不同围压下的应力-应变曲线

    Figure  17.  Stress-strain curves of granite under different confining pressures

    图  18  不同花岗岩试样在不同围压下的试验结果

    Figure  18.  Test results of weathered granite under different confining pressures

    图  19  花岗岩试样在不同围压下的破碎特征

    Figure  19.  Fracture characteristics of granite under different confining pressures

    图  20  花岗岩靶体撞击面破坏情况

    Figure  20.  Frontal damage of granite targets

    图  21  弹体侵彻花岗岩或混凝土靶体的无量纲侵深H/l0对比(CRH为3)

    Figure  21.  Comparison of non-dimensional penetration depth H/l0 when projectile penetration into granite or concrete targets (CRH is 3)

    表  1  不同风化程度花岗岩的基本物理力学参数

    Table  1.   Basic physical parameters of granite specimens with different weathering degrees

    岩石种类 体积密度/
    (g·cm−3)
    天然含水量/% 孔隙率/% 纵波波速/
    (km·s−1)
    中风化花岗岩 2.54 0.06 2.01 2.483
    微风化花岗岩 2.58 0.02 0.74 2.405
    下载: 导出CSV

    表  2  风化花岗岩的力学试验方案

    Table  2.   Scheme of mechanical experiments for weathered granite

    试验编号 试验类型 岩石类型 直径/mm 高度/mm 试验次数 控制变量
    1 静态单轴压缩 中风化 50 100 9 加载速率
    微风化 50 100 9 加载速率
    2 静态三轴压缩 中风化 50 100 9 围压
    微风化 50 100 9 围压
    3 动态单轴压缩 中风化 50 25 9 应变率
    微风化 50 25 9 应变率
    4 动态三轴压缩 中风化 50 25 6 围压
    微风化 50 25 6 围压
    5 侵彻试验 中风化 300 500 3 侵彻速度
    微风化 300 500 6 侵彻速度
    下载: 导出CSV

    表  3  不同风化程度花岗岩的静态压缩试验测试结果

    Table  3.   Results of static compression tests of granite with different weathering degrees

    试验编号 岩石类型 加载速率/(μm·s−1) 单轴压缩强度/MPa 峰值应变/% 弹性模量/GPa
    1-1 中风化 1 47.10 0.93 8.44
    1-2 中风化 10 54.22 1.29 8.23
    1-3 中风化 50 59.23 1.36 9.37
    1-4 微风化 1 105.49 1.30 13.42
    1-5 微风化 10 134.85 1.70 13.72
    1-6 微风化 50 165.11 1.64 14.75
    下载: 导出CSV

    表  4  弹体侵彻花岗岩靶的试验结果

    Table  4.   Experimental results of projectile penetration into granite targets

    试验编号 靶标类型 初始速度v0/(m·s−1) 侵彻深度H/mm 无量纲侵深H/l0
    3-1 微风化花岗岩 1021 52.17 1.61
    3-2 微风化花岗岩 873 50.56 1.55
    3-3 微风化花岗岩 971 51.43 1.58
    3-4 微风化花岗岩 1040 58.51 1.80
    3-5 微风化花岗岩 1003 52.08 1.60
    3-6 中风化花岗岩 980 53.42 1.64
    3-7 中风化花岗岩 882 51.15 1.57
     注:未列出试验中获得的无效数据。
    下载: 导出CSV
  • [1] 徐干成, 顾金才, 张向阳, 等. 地下洞库围岩外加固抗炸弹侵彻性能研究 [J]. 岩石力学与工程学报, 2012, 31(10): 2064–2070. DOI: 10.3969/j.issn.1000-6915.2012.10.011.

    XU G C, GU J C, ZHANG X Y, et al. Penetration resistivity research on anchored cavern surface rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2064–2070. DOI: 10.3969/j.issn.1000-6915.2012.10.011.
    [2] 高杰, 何翔, 李磊, 等. 金属-岩石复合材料抗侵彻性能研究 [J]. 防护工程, 2016, 38(5): 11–16.

    GAO J, HE X, LI L, et al. Study on anti-penetration performance of metal-rock composite [J]. Protective Engineering, 2016, 38(5): 11–16.
    [3] 邓国强, 孙宇新, 胡金生. 高速侵彻硬目标时弹体极限试验研究 [J]. 防护工程, 2016, 38(6): 14–17.

    DENG G Q, SUN Y X, HU J S. Experimental study on the ultimate performance of projectile under high velocity penetration to hard target [J]. Protective Engineering, 2016, 38(6): 14–17.
    [4] 季京晨. 花岗岩物理力学性质与宏微观力学特性研究[D]. 淮南: 安徽理工大学, 2019: 18–26. DOI: 10.26918/d.cnki.ghngc.2019.000075.

    JI J C. Study on the physical and mechanical properties of the granite and the micro-mechanical properties of the macro[D]. Huainan: Anhui University of Science & Technology, 2019: 18–26. DOI: 10.26918/d.cnki.ghngc.2019.000075.
    [5] 钱七虎, 王明洋. 岩土中的冲击爆炸效应[M]. 北京: 国防工业出版社, 2010: 1–24.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil[M]. Beijing: National Defense Industry Press, 2010: 1–24.
    [6] 张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.

    ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
    [7] 孙其然, 孙宇新, 李芮宇, 等. 带模拟装药弹体高速冲击岩石靶时的断裂特性 [J]. 爆炸与冲击, 2019, 39(1): 013303. DOI: 10.11883/bzycj-2017-0313.

    SUN Q R, SUN Y X, LI R Y, et al. Simulation of explosive simulant filled with high-velocity projectiles crushing onto rock [J]. Explosion and Shock Waves, 2019, 39(1): 013303. DOI: 10.11883/bzycj-2017-0313.
    [8] 张翼宇. 不同风化程度花岗岩破坏特征及损伤演化试验研究[D]. 郑州: 华北水利水电大学, 2022: 9–25. DOI: 10.27144/d.cnki.ghbsc.2022.000389.

    ZHANG Y Y. Experimental study on failure properties and damage behavior of granite specimens with different weathering degrees[J]. Zhengzhou: North China University of Water Resources and Electric Power, 2022: 9–25. DOI: 10.27144/d.cnki.ghbsc.2022.000389.
    [9] DA FONSECA A V, CARVALHO J, FERREIRA C, et al. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques [J]. Geotechnical & Geological Engineering, 2006, 24(5): 1307–1348. DOI: 10.1007/s10706-005-2023-z.
    [10] 黄飞宇. 风化程度影响下花岗岩风化壳物理力学性质与微观特征研究[D]. 广州: 广州大学, 2021: 57–69. DOI: 10.27040/d.cnki.ggzdu.2021.000845.

    HUANG F Y. Study on physical and mechanical properties and microscopic characteristics of granite weathering crust under the influence of weathering degree[D]. Guangzhou: Guangzhou University, 2021: 57–69. DOI: 10.27040/d.cnki.ggzdu.2021.000845.
    [11] HAKALEHTO K O. Brittle fracture of rocks under impulse loads [J]. International Journal of Fracture Mechanics, 1970, 6(3): 249–256. DOI: 10.1007/BF00212655.
    [12] BASU A, MISHRA D A, ROYCHOWDHURY K. Rock failure modes under uniaxial compression, Brazilian, and point load tests [J]. Bulletin of Engineering Geology and the Environment, 2013, 72(3/4): 457–475. DOI: 10.1007/s10064-013-0505-4.
    [13] 李传净. 花岗岩在冲击作用下的力学特性及破坏形态研究[D]. 西安: 西安科技大学, 2018: 13–37.

    LI C J. Study on mechanical properties and failure morphology of granite under impact[D]. Xi’an: Xi’an University of Science and Technology, 2018: 13–37.
    [14] 宋耀. 不同加载率条件下花岗岩动态断裂及损伤机理试验研究[D]. 北京: 中国矿业大学(北京), 2019: 57–75. DOI: 10.27624/d.cnki.gzkbu.2019.000133.

    SONG Y. Experimental study on dynamic fracture and damage mechanism of granite under different loading rates[D]. Beijing: China University of Mining and Technology (Beijing), 2019: 57–75. DOI: 10.27624/d.cnki.gzkbu.2019.000133.
    [15] 刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征 [J]. 高压物理学报, 2021, 35(2): 024102. DOI: 10.11858/gywlxb.20200622.

    LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. DOI: 10.11858/gywlxb.20200622.
    [16] 李艳, 程禹翰, 翟越, 等. 高温后花岗岩微观结构演化特性与动态力学性能研究 [J]. 岩土力学, 2022, 43(12): 3316–3326. DOI: 10.16285/j.rsm.2022.0101.

    LI Y, CHENG Y H, ZHAI Y, et al. Micro-structure characteristics and dynamic mechanical properties of granite after high temperature [J]. Rock and Soil Mechanics, 2022, 43(12): 3316–3326. DOI: 10.16285/j.rsm.2022.0101.
    [17] 赵宁, 董硕, 陈熙宇, 等. 弱风化花岗岩的动态力学特性试验研究 [J]. 三峡大学学报(自然科学版), 2022, 44(5): 62–70. DOI: 10.13393/j.cnki.issn.1672-948X.2022.05.011.

    ZHAO N, DONG S, CHEN X Y, et al. Experimental investigation on the dynamic mechanical properties of weakly weathered granite [J]. Journal of China Three Gorges University (Natural Sciences), 2022, 44(5): 62–70. DOI: 10.13393/j.cnki.issn.1672-948X.2022.05.011.
    [18] 张文峰. 不同风化程度作用下岩石破坏特性试验研究 [J]. 安徽建筑, 2022, 29(10): 162–164. DOI: 10.16330/j.cnki.1007-7359.2022.10.068.

    ZHANG W F. Experimental study on failure properties of granite with different weathering degrees [J]. Anhui Architecture, 2022, 29(10): 162–164. DOI: 10.16330/j.cnki.1007-7359.2022.10.068.
    [19] 王政, 楼建锋, 勇珩, 等. 岩石、混凝土和土抗侵彻能力数值计算与分析 [J]. 高压物理学报, 2010, 24(3): 175–180. DOI: 10.11858/gywlxb.2010.03.003.

    WANG Z, LOU J F, YONG H, et al. Numerical computation and analysis on anti-penetration capability of rock, concrete and soil [J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 175–180. DOI: 10.11858/gywlxb.2010.03.003.
    [20] 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.

    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
    [21] 宋春明, 李干, 王明洋, 等. 不同速度段弹体侵彻岩石靶体的理论分析 [J]. 爆炸与冲击, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.

    SONG C M, LI G, WANG M Y, et al. Theoretical analysis of projectiles penetrating into rock targets at different velocities [J]. Explosion and Shock Waves, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.
    [22] 李彦豪. 超高速撞击条件下重金属长杆弹对花岗岩靶的成坑规律研究[D]. 西安: 西安建筑科技大学, 2020: 19–32. DOI: 10.27393/d.cnki.gxazu.2020.000958.

    LI Y H. Study on pit formation of granite targets by heavy metal long rod projections under hypervelocity impact[D]. Xi’an: Xi’an University of Architecture and Technology, 2020: 19–32. DOI: 10.27393/d.cnki.gxazu.2020.000958.
    [23] 聂铮玥, 丁育青, 宋江杰, 等. 花岗岩Kong-Fang流体弹塑性损伤材料模型参数研究 [J]. 爆炸与冲击, 2022, 42(9): 091409. DOI: 10.11883/bzycj-2021-0363.

    NIE Z Y, DING Y Q, SONG J J, et al. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite [J]. Explosion and Shock Waves, 2022, 42(9): 091409. DOI: 10.11883/bzycj-2021-0363.
    [24] ULUSAY R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014[M]. Cham: Springer, 2015: 47–48. DOI: 10.1007/978-3-319-07713-0.
    [25] FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93–106. DOI: 10.1007/BF02411056.
    [26] SHANG J L, SHEN L T, ZHAO J. Hugoniot equation of state of the Bukit Timah granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 705–713. DOI: 10.1016/S1365-1609(00)00002-2.
    [27] 聂铮玥, 彭永, 陈荣, 等. 侵彻条件下岩石类材料RHT模型参数敏感性分析 [J]. 振动与冲击, 2021, 40(14): 108–116. DOI: 10.13465/j.cnki.jvs.2021.14.015.

    NIE Z Y, PENG Y, CHEN R, et al. Sensitivity analysis of RHT model parameters for rock materials under penetrating condition [J]. Journal of Vibration and Shock, 2021, 40(14): 108–116. DOI: 10.13465/j.cnki.jvs.2021.14.015.
    [28] 左魁, 张继春, 曾宪明, 等. BLU-109B模型弹在岩石介质中成坑效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on formation of craters in rock with BLU-109B Earth penetrating model projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.
    [29] LI J, WANG M Y, CHENG Y H, et al. Analytical model of hypervelocity penetration into rock [J]. International Journal of Impact Engineering, 2018, 122: 384–394. DOI: 10.1016/j.ijimpeng.2018.08.008.
    [30] 刘士践. 动能弹垂直侵彻混凝土的实验研究及其数值模拟[D]. 成都: 西南交通大学, 2007: 10–17.
    [31] 高飞, 张国凯, 纪玉国, 等. 卵形弹体超高速侵彻砂浆靶的响应特性 [J]. 兵工学报, 2020, 41(10): 1979–1987. DOI: 10.3969/j.issm.1000-1093.2020.10.007.

    GAO F, ZHANG G K, JI Y G, et al. Response characteristics of hypervelocity ogive-nose projectile penetrating into mortar target [J]. Acta Armamentarii, 2020, 41(10): 1979–1987. DOI: 10.3969/j.issm.1000-1093.2020.10.007.
    [32] 吕映庆, 陈南勋, 武海军, 等. 弹体高速侵彻超高性能混凝土靶机理 [J]. 兵工学报, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.

    LYU Y Q, CHEN N X, WU H J, et al. Mechanism of high-velocity projectile penetrating into ultra-high performance concrete target [J]. Acta Armamentarii, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.
    [33] 张雪岩, 武海军, 李金柱, 等. 弹体高速侵彻两种强度混凝土靶的对比研究 [J]. 兵工学报, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.

    ZHANG X Y, WU H J, LI J Z, et al. Comparative study of projectiles penetrating into two kinds of concrete targets at high velocity [J]. Acta Armamentarii, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.
    [34] WU H J, WANG K H, YANG H, et al. Effects of gradient nanostructures on the tribological properties and projectile abrasion during high-speed penetration in AerMet100 steel [J]. Journal of Materials Research and Technology, 2023, 25: 5871–5887. DOI: 10.1016/j.jmrt.2023.06.277.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  12
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-06-25
  • 网络出版日期:  2024-06-27

目录

    /

    返回文章
    返回