混凝土中多点聚集爆炸效应起爆参数优化设计

时本军 李杰 徐小辉 徐天涵 郭纬 李孝臣 李超 李干

时本军, 李杰, 徐小辉, 徐天涵, 郭纬, 李孝臣, 李超, 李干. 混凝土中多点聚集爆炸效应起爆参数优化设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0023
引用本文: 时本军, 李杰, 徐小辉, 徐天涵, 郭纬, 李孝臣, 李超, 李干. 混凝土中多点聚集爆炸效应起爆参数优化设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0023
SHI Benjun, LI Jie, XU Xiaohui, XU Tianhan, GUO Wei, LI Xiaochen, LI Chao, LI Gan. Optimization of detonation parameters for multi-point aggregated explosion effects in concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0023
Citation: SHI Benjun, LI Jie, XU Xiaohui, XU Tianhan, GUO Wei, LI Xiaochen, LI Chao, LI Gan. Optimization of detonation parameters for multi-point aggregated explosion effects in concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0023

混凝土中多点聚集爆炸效应起爆参数优化设计

doi: 10.11883/bzycj-2024-0023
基金项目: 国家自然科学基金(52279120,12072371);江苏省自然科学基金(BK20221528);爆炸冲击防灾减灾全国重点实验室基金(LGD-SKL-202202)
详细信息
    作者简介:

    时本军(1993- ),男,博士研究生,benjunshi@163.com

    通讯作者:

    李 杰(1981- ),男,博士,教授,lijierf@163.com

  • 中图分类号: O382

Optimization of detonation parameters for multi-point aggregated explosion effects in concrete

  • 摘要: 混凝土介质中多点同时或彼此微差爆炸可产生复杂的地冲击波叠加聚集效应,从而使特定作用区域内的地冲击波压力显著增强,大大提升爆炸的毁伤威力。为获取多点爆源不同排布方式下爆炸聚集效应及地冲击传播衰减规律,进行了混凝土中单点和七点聚集爆炸的现场和数值模拟试验,基于正交设计方法和灰色系统理论对多点起爆参数进行了优化设计,建立了比例装药间距、比例有源装药高度和比例起爆微差等因素与不同爆心距下峰值压力间的灰色关联度系数及灰色关联度,确定了起爆参数的优选组合,并开展了数值模拟试验检验。分析结果表明:影响地冲击聚集效应的主要因素为比例装药间距,其次为比例起爆微差,最次为比例有源装药高度。在本模拟试验情况下,采用优化的起爆参数时,即在比例装药间距为0.549 m/kg1/3、比例起爆微差0.239 m/kg1/3和比例有源装药高度为0 m/kg1/3时,地冲击波聚集效应达到最佳,最大可达单点同等装药量产生的地冲击压力的4.7倍。
  • 图  1  多点爆炸模型

    Figure  1.  Multi-point explosion model

    图  2  有限元模型及边界条件

    Figure  2.  Finite element model and boundary conditions

    图  3  RHT模型原理

    Figure  3.  Principle of the RHT model

    图  4  不同网格尺寸模拟得到的距装药中心不同距离处混凝土中的应力时间历程

    Figure  4.  Stress-time histories at different monitoring points in concrete with different distances away from the explosive charge center simulated by applying different mesh sizes

    图  5  两种试验工况

    Figure  5.  Two test conditions

    图  6  TNT药球

    Figure  6.  TNT explosive balls

    图  7  混凝土靶体

    Figure  7.  Concrete targets

    图  8  封闭爆炸时数值模拟结果与试验结果对比

    Figure  8.  Comparison of numerical simulation results and experimental ones during closed explosion

    图  9  不同工况下测点的压力时程以及相应的数值模拟结果

    Figure  9.  Stress-time histories at the measured points under different test conditions and the corresponding numerically-simulated results

    图  10  爆炸波峰值应力随距离的变化

    Figure  10.  Variation of peak blast wave stress with distance

    图  11  装药布置的示意图

    Figure  11.  Schematic diagrams of the charge arrangements

    图  12  装药中心正下方应力时程曲线

    Figure  12.  Stress-time curves directly below the center of the charge

    图  13  不同装药间距下装药下方比例爆心距0.191和1.62 m/kg1/3处的压力分布

    Figure  13.  Pressure distribution at the scaled distances to explosion center 0.191 and 1.62 m/kg1/3 below the charge center under different charge spacings

    图  14  不同装药间距下峰值应力衰减曲线及放大倍数

    Figure  14.  Peak stress decay curves and their magnifications for different charge spacings

    图  15  优化后起爆参数峰值应力衰减曲线及放大倍数

    Figure  15.  Optimized peak stress decay curve and amplification of detonation parameters

    表  1  TNT炸药的参数

    Table  1.   Parameters for TNT explosive

    ρ0/(g·cm−3)A/GPaB/GPaR1R2ωD/(km·s−1)E0/GPa
    1.63373.773.74714.150.900.356.936.0
    下载: 导出CSV

    表  2  试验与数值模拟得到的弹坑尺寸

    Table  2.   Crater dimensions by test and numerical simulation

    工况 弹坑的深度 弹坑的直径
    模拟值/m 试验值/m 偏差/% 模拟值/m 试验值/m 偏差/%
    七点爆炸 0.441 0.430 2.56 0.748 0.755 −0.93
    单点爆炸 0.530 0.490 8.16 0.225 0.200 12.50
    下载: 导出CSV

    表  3  试验与数值荷载峰值比较

    Table  3.   Comparison of experimental and numerical peak loads

    工况 测点 荷载峰值
    模拟值/MPa 试验值/MPa 偏差/%
    七点爆炸 S1 29.7 29.2 1.71
    S3 16.0 14.6 9.59
    单点爆炸 S1 79.2 59.0 34.23
    S4 3.9 3.7 5.41
    下载: 导出CSV

    表  4  不同比例装药间距下拟合参数

    Table  4.   Fitting parameters for different proportions of charge spacing

    Ω/(m∙kg−1/3) K N Ω/(m∙kg−1/3) K N
    0 10.218 −1.810 0.549 14.843 −0.652
    0.239 11.826 −1.597 0.812 11.218 −0.627
    0.406 13.851 −1.169 0.955 10.220 −0.629
    下载: 导出CSV

    表  5  控制因素和控制水平

    Table  5.   Control factors and level of control

    控制因素 水平
    1 2 3
    (X1) Ω/(m∙kg−1/3) 0.406 0.549 0.812
    (X2)$\varPsi $/(m∙kg−1/3) 0 0.048 0.095
    (X3)$\varGamma $/(m∙kg−1/3) 0 0.239 0.477
    下载: 导出CSV

    表  6  试验设计L9(34)矩阵

    Table  6.   Experimental design L9(34) matrix

    方案 水平组合 方案 水平组合
    Ω Ψ Γ Ω Ψ Γ
    1 1 1 1 6 2 3 2
    2 1 2 2 7 3 1 2
    3 1 3 3 8 3 2 3
    4 2 1 3 9 3 3 1
    5 2 2 1
    下载: 导出CSV

    表  7  正交试验各序列区间值像

    Table  7.   Orthogonal test interval values for each sequence

    工况 序列区间值像
    x1(k) x2(k) x3(k) y1(k) y2(k) y3(k)
    1 0.000 0.000 0.000 0.108 0.020 0.000
    2 0.000 0.505 0.501 0.302 0.247 0.340
    3 0.000 1.000 1.000 0.401 0.408 0.228
    4 0.352 0.000 1.000 0.305 0.370 0.325
    5 0.352 0.505 0.000 1.000 1.000 1.000
    6 0.352 1.000 0.501 0.535 0.399 0.324
    7 1.000 0.000 0.501 0.732 0.651 0.469
    8 1.000 0.505 1.000 0.000 0.000 0.015
    9 1.000 1.000 0.000 0.165 0.546 0.699
    下载: 导出CSV

    表  8  3种因素在3种水平下就S3峰值应力的关联度系数和关联度

    Table  8.   Correlation coefficients and correlation of peak S3 stress at different levels of different factors

    工况 关联度系数
    Ω $\varPsi $ $\varGamma $
    1 0.925 0.925 0.925
    2 0.773 0.844 0.847
    3 0.713 0.618 0.618
    4 0.986 0.771 0.580
    5 0.598 0.665 0.486
    6 0.860 0.680 1.000
    7 0.796 0.567 0.823
    8 0.486 0.660 0.486
    9 0.533 0.533 0.875
    关联度 0.741 0.696 0.738
    下载: 导出CSV

    表  9  多目标灰色关联度系数平均值

    Table  9.   Mean values of gray correlation coefficients for pairs of indicators

    控制因素 平均灰色关联系数
    1 2 3
    Ω 0.816 0.829 0.601
    $\varPsi $ 0.763 0.696 0.604
    $\varGamma $ 0.590 0.870 0.533
    下载: 导出CSV
  • [1] 邓国强, 周早生, 郑全平. 钻地弹爆炸聚集效应研究现状及展望 [J]. 解放军理工大学学报(自然科学版), 2002, 3(3): 45–49. DOI: 10.3969/j.issn.1009-3443.2002.03.012.

    DENG G Q, ZHOU Z S, ZHENG Q P. Study status quo and development of aggregated effect of multiple earth penetrator bursts detonated simultaneously [J]. Journal of the PLA University of Science and Technology, 2002, 3(3): 45–49. DOI: 10.3969/j.issn.1009-3443.2002.03.012.
    [2] LENG Z D, SUN J S, LU W B, et al. Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation [J]. Computers and Geotechnics, 2021, 129: 103873. DOI: 10.1016/j.compgeo.2020.103873.
    [3] LENG Z D, FAN Y, GAO Q D, et al. Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine [J]. International Journal of Mining Science and Technology, 2020, 30(3): 373–380. DOI: 10.1016/j.ijmst.2020.03.010.
    [4] GAO Q D, LU W B, YAN P, et al. Effect of initiation location on distribution and utilization of explosion energy during rock blasting [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3433–3447. DOI: 10.1007/s10064-018-1296-4.
    [5] PHILLIPS J S, BRATTON J L. ground shock analysis of the multiple burst experiments: ADA 088510 [R]. Springfield: NITS, 1978.
    [6] RUETENIK J R, HOBBS N P, SMILEY R F. Calculation of multiple burst interactions for six simultaneous explosions of 120 Ton ANFO charges: ADA 091978 [R]. Springfield: NITS, 1979.
    [7] HU H W, SONG P, GUO S F, et al. Shock wave and bubble characteristics of underwater array explosion of charges [J]. Defence Technology, 2022, 18(8): 1445–1453. DOI: 10.1016/J.DT.2021.05.020.
    [8] IZUMI K, ASO S, NISHIDA M. Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors [J]. Shock Waves, 1994, 3(3): 213–222. DOI: 10.1007/BF01414715.
    [9] KISHIGE H, TESHIMA K, NISHIDA M. Focusing of shock waves reflected from an axisymmetrically parabolic wall [C]. Proceedings of the 18th International Symposium on Shock Waves. Sendai: Springer, 1992: 341–345. DOI: 10.1007/978-3-642-77648-9_50.
    [10] QIU P, YUE Z W, ZHANG S C, et al. An in situ simultaneous measurement system combining photoelasticity and caustics methods for blast-induced dynamic fracture [J]. Review of Scientific Instruments, 2017, 88(11): 115113. DOI: 10.1063/1.4994811.
    [11] 李旭东, 刘凯欣, 张光升, 等. 冲击波在水泥砂浆板中的聚集效应 [J]. 清华大学学报(自然科学版), 2008, 48(8): 1272–1275. DOI: 10.16511/j.cnki.qhdxxb.2008.08.004.

    LI X D, LIU K X, ZHANG G S, et al. Focusing of shock waves in cement mortar plates [J]. Journal of Tsinghua University (Science & Technology), 2008, 48(8): 1272–1275. DOI: 10.16511/j.cnki.qhdxxb.2008.08.004.
    [12] LIN S J, WANG J X, LIU L T, et al. Research on damage effect of underwater multipoint synchronous explosion shock waves on air-backed clamped circular plate [J]. Ocean Engineering, 2021, 240: 109985. DOI: 10.1016/j.oceaneng.2021.109985.
    [13] KIM H D, KWEON Y H, SETOGUCHI T, et al. A study on the focusing phenomenon of a weak shock wave [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(11): 1209–1220. DOI: 10.1243/095440603771665241.
    [14] LIANG S M, TSAI C J, WU L N. Efficient, robust second-order total variation diminishing scheme [J]. AIAA Journal, 1996, 34(1): 193–195. DOI: 10.2514/3.13042.
    [15] LIANG S M, WU L N, HSU R L. Numerical investigation of axisymmetric shock wave focusing over paraboloidal reflectors [J]. Shock Waves, 1999, 9(6): 367–379. DOI: 10.1007/S001930050167.
    [16] QIU S, ELIASSON V. Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves [J]. Shock Waves, 2016, 26(3): 287–297. DOI: 10.1007/s00193-015-0567-2.
    [17] 刘玲, 袁俊明, 刘玉存, 等. 大型商场多点爆炸恐怖袭击事故数值模拟 [C]//中国化学会第29届学术年会摘要集: 第29分会: 公共安全化学. 北京: 中国化学会, 2014.
    [18] 邓国强, 龙汗, 周早生, 等. 钻地弹砂土中聚集爆炸地冲击试验与预测 [J]. 防护工程, 2001, 23(3): 24–28.
    [19] 叶海旺, 石文杰, 王二猛, 等. 金堆城露天矿生产爆破合理微差时间的探讨 [J]. 爆破, 2010, 27(1): 96–98. DOI: 10.3963/j.issn.1001-487X.2010.01.026.

    YE H W, SHI W J, WANG E M, et al. Research of reasonable delay intervals in Jinduicheng open-pit mine [J]. Blasting, 2010, 27(1): 96–98. DOI: 10.3963/j.issn.1001-487X.2010.01.026.
    [20] 顾强, 张世豪, 安晓红, 等. 基于灰色理论的两点爆炸起爆参数优化设计 [J]. 爆炸与冲击, 2015, 35(3): 359–365. DOI: 10.11883/1001-1455(2015)03-0359-07.

    GU Q, ZHANG S H, AN X H, et al. Optimization design for priming parameters of two-point explosion based on gray theory [J]. Explosion and Shock Waves, 2015, 35(3): 359–365. DOI: 10.11883/1001-1455(2015)03-0359-07.
    [21] Century Dynamics Inc. Ansys/Autodyn Version 11.0: user documentation [Z]. Pennsylvania, USA: Century Dynamics Inc, 2007: 89–112.
    [22] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics of Fluids, 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
    [23] MU C M, ZHOU H, MA H F. Prediction method for ground shock parameters of explosion in concrete [J]. Construction and Building Materials, 2021, 291: 123372. DOI: 10.1016/J.CONBUILDMAT.2021.123372.
    [24] OSEI F B, DUKER A A, STEIN A. Bayesian structured additive regression modeling of epidemic data: application to cholera [J]. BMC Medical Research Methodology, 2012, 12(1): 118. DOI: 10.1186/1471-2288-12-118.
    [25] LI F G, LUAN P X. ARMA model for predicting the number of new outbreaks of Newcastle disease during the month [C]. //2011 IEEE International Conference on Computer Science and Automation Engineering. Shanghai, China: IEEE, 2011: 660–663. DOI: 10.1109/CSAE.2011.5952933.
    [26] KOROSTIL I A, PETERS G W, CORNEBISE J, et al. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus [J]. Statistics in Medicine, 2013, 32(11): 1917–1953. DOI: 10.1002/sim.5590.
    [27] ROBERTS M G, LAWSON J R, GEMMELL M A. Population dynamics in echinococcosis and cysticercosis: mathematical model of the life-cycles of Taenia hydatigena and T. ovis [J]. Parasitology, 1987, 94(1): 181–197. DOI: 10.1017/S0031182000053555.
    [28] HUANG J C. Application of grey system theory in telecare [J]. Computers in Biology and Medicine, 2011, 41(5): 302–306. DOI: 10.1016/j.compbiomed.2011.03.007.
    [29] LEE Y S, TONG L I. Forecasting energy consumption using a grey model improved by incorporating genetic programming [J]. Energy Conversion and Management, 2011, 52(1): 147–152. DOI: 10.1016/j.enconman.2010.06.053.
    [30] 王莹, 肖巍, 姚熊亮, 等. 水下爆炸冲击波载荷作用下冰层破碎特性及其影响因素 [J]. 爆炸与冲击, 2019, 39(7): 073103. DOI: 10.11883/bzycj-2018-0141.

    WANG Y, XIAO W, YAO X L, et al. Fragmentation of ice cover subjected to underwater explosion shock wave load and its influence factors [J]. Explosion and Shock Waves, 2019, 39(7): 073103. DOI: 10.11883/bzycj-2018-0141.
    [31] 吕锋. 灰色系统关联度之分辨系数的研究 [J]. 系统工程理论与实践, 1997, 17(6): 49–54. DOI: 10.3321/j.issn:1000-6788.1997.06.011.

    LÜ F. Research on the identification coefficient of relational grade for grey system [J]. Systems Engineering-Theory & Practice, 1997, 17(6): 49–54. DOI: 10.3321/j.issn:1000-6788.1997.06.011.
  • 加载中
图(15) / 表(9)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  32
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-09-03
  • 网络出版日期:  2024-09-04

目录

    /

    返回文章
    返回