Influence of explosion venting conditions on the deflagration characteristics of gas-powder two-phase mixture system in pipe
-
摘要: 为探究气粉两相混合体系泄爆特性变化规律,以甲烷-硝酸铵为实验介质,利用自行搭建的不锈钢火焰加速管道开展了泄爆口不同静态动作压力(pst)的燃爆实验,着重研究了pst对气粉两相燃爆压力、火焰传播速度和泄爆火焰形态的影响规律。pst由泄爆口阻塞比(θ)和泄爆膜层数(n)决定,θ和n增大的共同作用使pst升高。pst升高将增强管道对气粉和反应产物冲出管外的约束,增大管内流体的黏滞效应,促进管内气粉两相反应,降低未燃气在管外二次爆炸的强度。对爆燃压力进行分析,发现pst从2.97 kPa升高至14.64 kPa时,爆燃压力时程曲线呈含维稳平台的双峰结构。第一压力峰值从5.48 kPa增大至10.20 kPa,维稳时间从6 ms延长至25 ms,第二压力峰值从23.03 kPa减小至9.71 kPa;pst为16.08 和24.12 kPa时,破膜前压力多次叠加反射,致使泄爆膜压力时程曲线呈特殊振荡上升的三峰结构。对火焰传播速度进行分析,发现pst升高使火焰的平均传播速度从161.33 m/s降低至67.99 m/s。对泄爆火焰进行分析,发现当n=2时,θ增大将使泄爆火焰结构由簇状转变为射流状;θ=88.9%时,泄爆火焰呈典型的射流状。θ增大和n增大均使火焰亮度逐渐降低,火焰发光区长度减小,破膜至火焰出现时间间隔和火焰持续时间延长。Abstract: To investigate the variation law of the blasting characteristics of the gas-powder two-phase mixed system, blast experiments with different outlet static action pressures (pst) were carried out in a self-built stainless steel flame acceleration pipeline, and the variation law of pst on two-phase blasting pressure, flame propagation velocity, and blasting flame morphology was emphatically studied. pst is determined by the blasting hole blocking ratio (θ) and the number of blasting film layers (n). The increase of θ and n together increases pst. The increase of pst strengthens the constraint of gas powder and reaction products flowing out of the pipe, increases the viscosity effect of the fluid in the pipe, promotes the reaction of gas powder in the pipe, and reduces the degree of secondary explosion of unfired gas outside the pipe. For the pressure-time interval curve analysis, pst increases from 2.97 kPa to 14.64 kPa, and the pressure time interval curve shows a double peak structure with a keep platform. The first pressure peak increases from 5.48 kPa to 10.20 kPa, the keep time extends from 6 ms to 25 ms, and the second pressure peak decreases from 23.03 kPa to 9.71 kPa. When pst is 16.08 and 24.12 kPa, the pressure before the bursting film is superimposed and reflected many times, resulting in the time-history curve of bursting film pressure showing a special oscillating and rising three-peak structure. In the analysis of flame propagation velocity, the increase of pst decreases the average flame propagation velocity from 161.33 m/s to 67.99 m/s. When n=2, the increase of θ makes the flame structure change from cluster to jet. When θ=88.9%, the blasting flame shows a typical jet shape. The increase of θ and n makes the flame brightness gradually decrease, the length of the flame luminescence zone decreases, the time interval from breaking film to flame emergence and the flame duration increase.
-
表 1 泄爆口径与阻塞比的关系
Table 1. Relationship between blasting aperture and blocking ratio
D/mm SC/cm2 θ/% 120 0 0 80 249.33 55.6 40 400.12 88.9 表 2 静态动作压力测试结果
Table 2. Test results of static action pressure
n pst/kPa D=120 mm D=80 mm D=40 mm 1 3.25 5.20 9.16 2 6.36 9.61 18.96 3 9.16 14.62 22.28 4 16.51 19.25 31.82 表 3 静态动作压力计算模型预测结果
Table 3. Results predicted by static action pressure calculation model
n pst/kPa D=120 mm D=80 mm D=40 mm 1 2.97 4.88 8.04 2 5.94 9.70 16.08 3 8.91 14.64 24.12 -
[1] DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370. [2] BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084. [3] GAO W, YU J L, ZHANG X Y, et al. Characteristics of vented nano-polymethyl methacrylate dust explosions [J]. Powder Technology, 2015, 283: 406–414. DOI: 10.1016/j.powtec.2015.06.011. [4] GAO W, YU J L, LI J, et al. Experimental investigation on micro- and nano-PMMA dust explosion venting at elevated static activation overpressures [J]. Powder Technology, 2016, 301: 713–722. DOI: 10.1016/j.powtec.2016.07.012. [5] PROUST C. Turbulent flame propagation in large dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 859–869. DOI: 10.1016/j.jlp.2017.05.011. [6] 邢志祥, 杜贞, 张成燕, 等. 密闭储罐内填充非金属多孔材料后预混可燃气体火焰传播的数值模拟 [J]. 安全与环境学报, 2014, 14(6): 91–95. DOI: 10.13637/j.issn.1009-6094.2014.06.022.XING Z X, DU Z, ZHANG C Y, et al. Simulation for the propagation of the premixed combustible gas flame in a closed tank with non-metal porous materials [J]. Journal of Safety and Environment, 2014, 14(6): 91–95. DOI: 10.13637/j.issn.1009-6094.2014.06.022. [7] 师喜林, 蒋军成, 王志荣, 等. 甲烷-空气预混气体泄爆过程的实验研究 [J]. 中国安全科学学报, 2007, 17(12): 107–110. DOI: 10.3969/j.issn.1003-3033.2007.12.019.SHI X L, JIANG J C, WANG Z R, et al. Experimental study on the venting process of methane-air mixture explosion [J]. China Safety Science Journal, 2007, 17(12): 107–110. DOI: 10.3969/j.issn.1003-3033.2007.12.019. [8] 师喜林, 王志荣, 蒋军成. 球形容器内气体的泄爆过程 [J]. 爆炸与冲击, 2009, 29(4): 390–394. DOI: 10.3321/j.issn:1001-1455.2009.04.010.SHI X L, WANG Z R, JIANG J C. Explosion-vented processes for methane-air premixed gas in spherical vessels with venting pipes [J]. Explosion and Shock Waves, 2009, 29(4): 390–394. DOI: 10.3321/j.issn:1001-1455.2009.04.010. [9] 王健, 余靖宇, 凡子尧, 等. 组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562.WANG J, YU J Y, FAN Z Y, et al. Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain [J]. Explosion and Shock Waves, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562. [10] 杜赛枫, 张凯, 陈昊, 等. 破膜压力对氢-空气预混气体燃爆特性的影响 [J]. 爆炸与冲击, 2023, 43(2): 025401. DOI: 10.11883/bzycj-2022-0174.DU S F, ZHANG K, CHEN H, et al. Effects of vent burst pressure on explosion characteristics of premixed hydrogen-air gases [J]. Explosion and Shock Waves, 2023, 43(2): 025401. DOI: 10.11883/bzycj-2022-0174. [11] 陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418. [12] 郑凯, 任佳乐, 宋晨, 等. 泡沫铜对密闭管道内合成气爆炸特性影响的实验研究 [J]. 爆炸与冲击, 2024, 44(1): 012102. DOI: 10.11883/bzycj-2023-0036.ZHENG K, REN J L, SONG C, et al. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe [J]. Explosion and Shock Waves, 2024, 44(1): 012102. DOI: 10.11883/bzycj-2023-0036. [13] RUI S C, LI Q, GUO J, et al. Experimental and numerical study on the effect of low vent burst pressure on vented methane-air deflagrations [J]. Process Safety and Environmental Protection, 2021, 146: 35–42. DOI: 10.1016/j.psep.2020.08.028. [14] CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003. [15] BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253–259. DOI: 10.1016/j.jlp.2009.09.004. [16] LIN B Q, GUO C, SUN Y M, et al. Effect of bifurcation on premixed methane-air explosion overpressure in pipes [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 464–470. DOI: 10.1016/j.jlp.2016.07.011. [17] CHEN Z H, FAN B C, JIANG X H, et al. Investigations of secondary explosions induced by venting [J]. Process Safety Progress, 2006, 25(3): 255–261. DOI: 10.1002/prs.10139. [18] JIANG X H, FAN B C, YE J F, at al. Experimental investigations on the external pressure during venting [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1): 21–26. DOI: 10.1016/j.jlp.2004.09.002. [19] 汪泉. 有机玻璃方管内瓦斯爆燃火焰传播特性研究 [D]. 合肥: 中国科学技术大学, 2013. [20] 常伟达, 汪泉, 李志敏, 等. 弱封闭管道向抑爆装置内泄爆对火焰传播特性的影响 [J]. 火工品, 2019(5): 52–56. DOI: 10.3969/j.issn.1003-1480.2019.05.014.CHANG W D, WANG Q, LI Z M, et al. The effect of the weak closed-pipe venting into explosion suppression device on the flame propagation characteristics [J]. Initiators & Pyrotechnics, 2019(5): 52–56. DOI: 10.3969/j.issn.1003-1480.2019.05.014. [21] 徐进生, 刘洋, 陈先锋, 等. 甲烷与空气质量浓度当量比对火焰结构及传播特性的影响 [J]. 中国安全科学学报, 2014, 24(9): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2014.09.018.XU J S, LIU Y, CHEN X F, et al. Effect of CH4 to air mass concentration ratio on flame structure and propagation characteristic [J]. China Safety Science Journal, 2014, 24(9): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2014.09.018. [22] FAKANDU B M, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 429–438. DOI: 10.1016/j.jlp.2015.02.005. [23] National Fire Protection Association. Standard on explosion protection by deflagration venting: NFPA 68 [S]. Quincy, MA: Batterymarch Parck, 2007. [24] European Committee for Standardization. Dust explosion venting protective systems: EN 14491 [S]. Brussels: European Committee for Standardization, 2013. [25] 张军. 无机盐粉对管内瓦斯爆燃火焰传播及泄放特性影响的研究 [D]. 淮南: 安徽理工大学, 2022.ZHAGN J. Study on the influence of inorganic salt powder on the flame propagation and venting characteristics of methane explosion [D]. Huainan: Anhui University of Science and Technology, 2022.