A study on injury effect of medium-caliber multi-environment bullets
-
摘要: 为探究跨介质枪弹的致伤威力,选用明胶为人体模拟靶标,借助LS-DYNA软件对设计的7.62 mm多环境枪弹侵彻模拟靶标过程进行了数值模拟,分析了弹头的运动规律和靶标空腔的变化特性,通过三自由度刚体运动模型,获得了弹头运动的理论曲线。采用多参数同步测量技术,开展了枪弹侵彻靶标实验。结果表明,数值模拟与实验现象一致,较好地再现了多环境枪弹侵彻靶标的过程和致伤效果。理论模型与实验结果误差较小,能准确预测枪弹在靶标中的运动规律。空化槽结构提高了枪弹跨介质运动的稳定性,相较传统的56式7.62 mm普通弹,多环境枪弹在靶标中稳定飞行时间长、距离远、速度衰减慢,翻滚阶段出靶角度小,最大空腔、永久空腔和能量传递效率基本一致,具有一定的致伤效果。研究成果可为新型轻武器弹药优化设计提供数据支撑。Abstract: To investigate the wound effectiveness of cross-medium bullets, gelatin is chosen as a simulated human target. The numerical simulation of the penetration process of the designed 7.62 mm multi-environment bullet into the simulated target is conducted using LS-DYNA software. The motion of the bullet and the changes in the target cavity are analyzed. By utilizing a three-degree-of-freedom rigid body motion model, the theoretical variations of bullet motion are obtained. In the same time, the penetration experiment was carried out by using multi-parameter synchronous measurement techniques. The results show that the numerical simulation agrees well with the experimental observations, effectively reproducing the penetration process and the wound effects of the multi-environment bullet. The theoretical model exhibits small errors compared to the experimental results but accurately predicts the motion characteristics of the bullet in the target. By employing a cavity structure, the stability of the bullet's motion across different media is improved. Compared to the traditional 56-type 7.62 mm rifle bullet, the designed bullet demonstrates longer stable flight time, greater distance, slower velocity decay, smaller deflection angle during tumbling phase, and comparable maximum cavity, permanent cavity, and energy transfer efficiency. It also exhibits a certain killing effect on the target. The research findings enrich the design theory of bullets and provide data support for the optimization design of new lightweight ammunition.
-
Key words:
- multi-environment /
- bullet /
- injury effect /
- gelatin /
- cavity
-
表 1 3种网格尺寸计算效果对比
Table 1. Comparison of calculation effect among three mesh sizes
单元格尺寸/mm 网格数量/个 t=0.1 ms t=0.8 ms 1.0 345000 0.5 690000 0.3 1150000 表 2 弹头材料模型参数
Table 2. Bullet material model parameters
材料 ρb/(kg·m−3) Eb/GPa γb H60黄铜 8930 12 0.34 ρ/(kg·m−3) E/kPa Et/kPa σ0/MPa C0/GPa C1/GPa C2/GPa C3/GPa 1030 850 10 0.22 0 2.38 7.14 11.9 表 4 弹头结构参数
Table 4. Bullet structure parameters
弹型 d/mm l/mm m/g Ia/(g·mm2) Ib/(g·mm2) 56式7.62 mm
普通弹7.62 26.8 7.90 57.3 366.9 7.62 mm多环境
枪弹7.62 29.0 7.99 50.0 398.0 表 5 2种枪弹实测初始运动参数
Table 5. Measured initial motion parameters of two kinds of bullets
弹型 v0/(m·s−1) α/(°) ψ0/(°) 733 1.5 1.5 700 1.5 1.4 表 6 2种枪弹在明胶靶标中的能量传递
Table 6. Energy transfer in two kinds of bullets penetrating gelatin targets
弹型 Eb/kJ ∆E/kJ η/% 56式7.62 mm普通弹 2.12 1.91 90 7.62 mm多环境枪弹 1.96 1.75 89 -
[1] MOXNES J F, FRØYLAND Ø, SKRIUDALEN S, et al. On the study of ricochet and penetration in sand, water and gelatin by spheres, 7.62 mm APM2, and 25 mm projectiles [J]. Defence Technology, 2016, 12(2): 159–170. DOI: 10.1016/j.dt.2015.12.004. [2] YAO E R, WANG H R, PAN L, et al. Vertical water-entry of bullet-shaped projectiles [J]. Journal of Applied Mathematics and Physics, 2014, 2(6): 323–334. DOI: 10.4236/jamp.2014.26039. [3] 李瑞杰, 王瑞, 徐保成, 等. 高速旋转超空泡枪弹水中弹道性能数值模拟 [J]. 兵工学报, 2020, 41(S1): 97–103. DOI: 10.3969/j.issn.1000-1093.2020.S1.014.LI R J, WANG R, XU B C, et al. Numerical simulation of underwater ballstic performance of high-speed spinning projectile [J]. Acta Armamentarii, 2020, 41(S1): 97–103. DOI: 10.3969/j.issn.1000-1093.2020.S1.014. [4] 梁化鹏, 薛建锋, 沈培辉. 低侵彻性枪弹的入水研究 [J]. 高压物理学报, 2018, 32(2): 025104. DOI: 10.11858/gywlxb.20170538.LIANG H P, XUE J F, SHEN P H. Research on the low-penetrating bullets entering water [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025104. DOI: 10.11858/gywlxb.20170538. [5] 马文轩, 于勇, 胡俊. 小口径超空泡子弹头部外形的优化设计 [J]. 爆炸与冲击, 2022, 42(3): 033305. DOI: 10.11883/bzycj-2021-0092.MA W X, YU Y, HU J. Optimal design of the head shape of a small-caliber supercavitating projectile [J]. Explosion and Shock Waves, 2022, 42(3): 033305. DOI: 10.11883/bzycj-2021-0092. [6] 王艺霏, 姜伟兵, 许辉, 等. 多环境枪弹高速垂直入水运动特性数值模拟研究 [J]. 兵器装备工程学报, 2023, 44(5): 6–10, 45. DOI: 10.11809/bqzbgcxb2023.05.002.WANG Y F, JIANG W B, XU H, et al. Numerical simulation of high-speed vertical water entry motion of multi-environment ammunition [J]. Journal of Ordnance Equipment Engineering, 2023, 44(5): 6–10, 45. DOI: 10.11809/bqzbgcxb2023.05.002. [7] 徐利芳. 基于超空泡原理的水下枪弹弹头: CN201820113847.4 [P]. 2018-06-01.XU L F. Cartridge warhead under water based on supercavitation principle: CN201820113847.4 [P]. 2018-06-01. [8] 尹兴超, 郝博, 代浩, 等. 不同角度对超空泡射弹入水过程的影响 [J]. 兵器装备工程学报, 2023, 44(10): 202–207. DOI: 10.11809/bqzbgcxb2023.10.027.YIN X C, HAO B, DAI H, et al. Influence of different angles on water entry process of supercavitation projectile [J]. Journal of Ordnance Equipment Engineering, 2023, 44(10): 202–207. DOI: 10.11809/bqzbgcxb2023.10.027. [9] 王光华, 吴志林, 赖西南, 等. 轻武器杀伤效应 [M]. 北京: 科学出版社, 2021: 272–277.WANG G H, WU Z L, LAI X N, et al. Terminal effects of small arms [M]. Beijing: China Science Publishing and Media Ltd., 2021: 272–277. [10] JIANG M F, LI Z X, LIU K, et al. Numerical study of the dynamic expansion behaviour of 9 mm expansion bullets in gelatine [J]. Forensic Science International, 2021, 329: 111051. DOI: 10.1016/j.forsciint.2021.111051. [11] 刘坤, 吴志林, 徐万和, 等. 弹头侵彻明胶的运动模型 [J]. 爆炸与冲击, 2012, 32(6): 616–622. DOI: 10.11883/1001-1455(2012)06-0616-07.LIU K, WU Z L, XU W H, et al. A motion model for bullet penetrating gelatin [J]. Explosion and Shock Waves, 2012, 32(6): 616–622. DOI: 10.11883/1001-1455(2012)06-0616-07. [12] 刘坤, 吴志林, 徐万和, 等. 弹头侵彻明胶运动模型参数研究 [J]. 高压物理学报, 2013, 27(5): 677–684. DOI: 10.11858/gywlxb.2013.05.004.LIU K, WU Z L, XU W H, et al. Research on model parameters of bullet penetrating gelatin [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 677–684. DOI: 10.11858/gywlxb.2013.05.004. [13] 刘坤, 吴志林, 徐万和, 等. 3种小口径步枪弹的致伤效应 [J]. 爆炸与冲击, 2014, 34(5): 608–614. DOI: 10.11883/1001-1455(2014)05-0608-07.LIU K, WU Z L, XU W H, et al. Wounding effects of three kinds of small caliber rifle cartridges [J]. Explosion and Shock Waves, 2014, 34(5): 608–614. DOI: 10.11883/1001-1455(2014)05-0608-07. [14] LIU K, NING J G, WU Z L, et al. A comparative investigation on motion model of rifle bullet penetration into gelatin [J]. International Journal of Impact Engineering, 2017, 103: 169–179. DOI: 10.1016/j.ijimpeng.2016.11.010.