Research on an equivalent simulation experimental technology for overloading environmental forces of charge
-
摘要: 为解决装药安全可靠性能实验成本高、强过载环境测试难度大等瓶颈问题,以等效模拟弹体侵彻钢板时内部装药过载环境力为目标,基于数值模拟方法,设计了装药过载环境力等效模拟实验装置,并开展了等效模拟实验,突破了同时满足加载压力大于1 GPa和脉冲宽度大于100 μs的技术难点。结果表明,弹丸侵彻钢板时装药受到的过载为正弦波单脉冲。在装置中采用波形调整器不仅能够调控加载到待测药表面的波形,还能对压力的衰减产生大幅影响。随着波形调整器厚度的增大,加载在待测药表面的压力逐渐减小,脉冲宽度显著增大;随着飞片厚度增大,飞片获得的驱动速度逐渐减小,加载在待测药表面的压力明显减小,脉冲宽度变化不明显。装药过载环境力模拟装置形成的脉冲特征值与弹丸侵彻钢靶过程的数值模拟结果对比,超压峰值误差最高为5.71%,脉宽误差最高为14.8%,均低于15%,验证了用该装置模拟弹体侵彻钢靶时装药加载状态的等效性。Abstract: To solve the bottleneck problems such as the high cost of charge safety and reliability test and the difficulty of strong overload environment test, the overload environment of the charge when a projectile penetrates a steel plate was simulated using AUTODYN finite element numerical simulation software, aiming at the equivalent simulation of the overload environmental force of the internal charge when the projectile penetrates the steel plate. Based on the parameters of the waveform, pressure peak, and pulse width obtained from the simulation, a charge loading simulation experimental device composed of an initiation system, loading system, auxiliary system, and pressure test system was designed, and the charge overload environmental force equivalent simulation experiment was carried out. To a certain extent, the equivalence of the charge loading state, when the experimental system simulated the projectile penetrating the steel target at a speed of 500−1200 m/s, was verified, which broke through the requirement that the loading pressure was greater than 1 GPa and the pulse width was greater than 100 μs. The results indicate that the overload pulse received by the projectile penetrating the steel plate charge is a sine wave single pulse. The waveform adjuster can not only regulate the generated waveform but also have a significant impact on the attenuation of pressure values. As the thickness of the waveform adjuster increases, the pressure loaded on the surface of the test drug gradually decreases, and the pulse width significantly increases. As the thickness of the flyer increases, the driving speed obtained by the flyer gradually decreases, and the pressure loaded on the surface of the test drug significantly decreases, with no significant change in pulse width. The comparison between the pulse characteristic values formed by the loading simulation test device and the numerical simulation results of the projectile penetrating the steel target shows that the maximum error of the overpressure peak is 5.71%, and the maximum error of the first peak pulse width is 14.8%, both lower than 15%. This verifies the equivalence of the loading state of the propellant when the test system simulates the projectile penetrating the steel target.
-
表 1 弹丸以不同的速度侵彻时装药试样加载数据
Table 1. Data of loads on the charge samples at different penetration velocities of the projectiles
侵彻速度/(m∙s−1) 压力峰值/GPa 脉冲宽度/μs 500 0.66 103 800 0.85 103 1000 1.05 101 1200 1.23 98 1500 1.51 96 表 2 实验方案及测试数据
Table 2. Experimental plan and test data
实验编号 df/mm 波形调整器材料 d/mm pp,e/GPa $ \dfrac{{{p_{{\text{p,e}}}} - {p_{{\text{p,s}}}}}}{{{p_{{\text{p,e}}}}}} \times 100{\text{%}} $ τe/μs $ \dfrac{{{\tau _{\text{s}}} - {\tau _{\text{e}}}}}{{{\tau _{\text{e}}}}} \times 100{\text{%}} $ 1 2.0 聚乙烯基(A) 13 1.27 −3.2 97 11.6 2 3.5 聚乙烯基(A) 13 1.02 2.9 102 14.8 3 5.0 聚乙烯基(A) 13 0.83 2.4 111 1.0 4 7.5 聚乙烯基(A) 13 0.70 −5.7 112 −1.9 5 2.0 橡胶基(B) 13 1.17 −1.7 134 −10.4 6 3.5 橡胶基(B) 13 0.94 −4.3 110 −12.7 7 5.0 橡胶基(B) 13 0.77 −9.1 122 −3.3 8 7.5 橡胶基(B) 13 0.55 12.7 128 −2.3 9 3.5 聚乙烯基(A) 5 1.09 −3.7 87 5.7 10 3.5 聚乙烯基(A) 25 0.87 5.7 102 −2.9 11 3.5 聚乙烯基(A) 35 0.77 −10.4 126 1.6 -
[1] 王宁. 弹体侵彻素混凝土过程中装药动态响应机理研究 [D]. 南京: 南京理工大学, 2017: 27–56. DOI: 10.7666/d.Y3548125.WANG N. Dynamic response of charges in projectiles during penetrating into concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2017: 27–56. DOI: 10.7666/d.Y3548125. [2] 成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004. [3] AYDEMIR E, ULAS A, SERIN N. Thermal decomposition and ignition of PBXN-110 plastic-bonded explosive [J]. Propellants, Explosives, Pyrotechnics, 2012, 37(3): 308–315. DOI: 10.1002/prep.201100011. [4] 刘卫, 张蕊, 沈瑞琪, 等. 高过载条件下火工品装药的响应特性 [J]. 兵工学报, 2016, 37(S2): 191–196.LIU W, ZHANG R, SHEN R Q, et al. Response characteristics of explosive charge in initiator under high-g loading [J]. Acta Armamentarii, 2016, 37(S2): 191–196. [5] 高昌印. 过载性能试验台设计及微型涡喷抗过载性能研究 [D]. 南京: 南京理工大学, 2016: 34–37. DOI: 10.7666/d.Y3198350.GAO C Y. Design of overload performance test bench and study on anti-overload performance of micro-turbine [D]. Nanjing: Nanjing University of Science and Technology, 2016: 34–37. DOI: 10.7666/d.Y3198350. [6] 李创新, 沈瑞琪, 刘卫, 等. 高加速度冲击过载下桥丝式电雷管的损伤特性研究 [J]. 火工品, 2012(3): 1–4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.LI C X, SHEN R Q, LIU W, et al. Research on damage characteristics of bridgewire electric detonator under high acceleration loading [J]. Initiators and Pyrotechnics, 2012(3): 1–4. DOI: 10.3969/j.issn.1003-1480.2012.03.002. [7] 王艳华. 火工品过载试验研究及数值模拟仿真 [D]. 太原: 中北大学, 2010: 20–31. DOI: 10.7666/d.D315111.WANG Y H. The study of the initiator overloading on experiment and the numerical simulation analyses [D]. Taiyuan: North University of China, 2010: 20–31. DOI: 10.7666/d.D315111. [8] 邓琼, 李玉龙, 索涛, 等. 火工品高过载动态力学性能测试方法研究 [J]. 火工品, 2007(1): 28–31. DOI: 10.3969/j.issn.1003-1480.2007.01.009.DENG Q, LI Y L, SUO T, et al. Test method on dynamic mechanical behavior of initiating explosive device under high acceleration [J]. Initiators and Pyrotechnics, 2007(1): 28–31. DOI: 10.3969/j.issn.1003-1480.2007.01.009. [9] 徐鹏, 祖静, 范锦彪. 高g值加速度冲击试验技术研究 [J]. 振动与冲击, 2011, 30(4): 241–243, 253. DOI: 10.13465/j.cnki.jvs.2011.04.009.XU P, ZU J, FAN J B. Acceleration shock test technology with higher values of g [J]. Journal of Vibration and Shock, 2011, 30(4): 241–243, 253. DOI: 10.13465/j.cnki.jvs.2011.04.009. [10] 周广宇, 胡时胜. 高g值加速度发生器中的波形整形技术 [J]. 爆炸与冲击, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.ZHOU G Y, HU S S. Pulse-shaping techniques of high-g-value acceleration generators [J]. Explosion and Shock Waves, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08. [11] 赵欣, 丁继锋, 韩增尧, 等. 航天器火工冲击模拟试验及响应预示方法研究综述 [J]. 爆炸与冲击, 2016, 36(2): 259–268. DOI: 10.11883/1001-1455(2016)02-0259-10.ZHAO X, DING J F, HAN Z Y, et al. Review of pyroshock simulation and response prediction methods in spacecraft [J]. Explosion and Shock Waves, 2016, 36(2): 259–268. DOI: 10.11883/1001-1455(2016)02-0259-10. [12] 门士滢. 高过载宽脉冲空气击锤设计及试验技术研究 [D]. 南京: 南京理工大学, 2014: 14–21. DOI: 10.7666/d.Y2520469. [13] 何小斌. 火工品过载特性落球碰撞模拟试验研究 [D]. 南京: 南京理工大学, 2010: 11–16. DOI: 10.7666/d.Y1697799.HE X B. Research on overload characteristics of initiating device by falling ball collision simulation tests [D]. Nanjing: Nanjing University of Science and Technology, 2010: 11–16. DOI: 10.7666/d.Y1697799. [14] 满晓飞, 门士滢, 马少杰, 等. 空气击锤装置模拟硬目标侵彻实验方法 [J]. 探测与控制学报, 2016, 38(3): 90–93.MAN X F, MEN S Y, MA S J, et al. Using air hammer device simulate hard target penetration process [J]. Journal of Detection and Control, 2016, 38(3): 90–93. [15] 陈健. 空气炮力学过载模拟试验波形展宽研究 [D]. 南京: 南京理工大学, 2018: 11–20. DOI: 10.27241/d.cnki.gnjgu.2019.001187.CHEN J. Research on waveform-broadening of mechanical overload simulation test on air gun [D]. Nanjing: Nanjing University of Science and Technology, 2018: 11–20. DOI: 10.27241/d.cnki.gnjgu.2019.001187. [16] 许志峰, 屈可朋. 装药发射安全性模拟加载实验方法研究 [J]. 火工品, 2015(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.XU Z F, QU K P. Study on experimental method of simulation loading for launch safety of charge [J]. Initiators and Pyrotechnics, 2015(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014. [17] 刘计划, 赵宏立, 何昌辉, 等. 冲击载荷作用下典型发射药的弹性模量分析方法 [J]. 兵工学报, 2021, 42(2): 289–296. DOI: 10.3969/j.issn.1000-1093.2021.02.007.LIU J H, ZHAO H L, HE C H, et al. Analysis method for elastic modulus of typical gun-propellant under impact loading [J]. Acta Armamentarii, 2021, 42(2): 289–296. DOI: 10.3969/j.issn.1000-1093.2021.02.007. [18] STARKENBERG J J, MCFADDEN D L, LYMAN O R. Cavity collapse ignition of composition B in the launch environment: BRL-TR-2714 [R]. Adelphi, USA: US Army Ballistic Research Laboratory, 1986. [19] 芮筱亭, 冯宾宾, 王燕, 等. 发射装药发射安全性评定方法研究 [J]. 兵工学报, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.RUI X T, FENG B B, WANG Y, et al. Research on evaluation method for launch safety of propellant charge [J]. Acta Armamentarii, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001. [20] 屈可朋, 肖玮, 李亮亮. 炸药装药侵彻安全性模拟实验方法研究 [J]. 火工品, 2017(1): 46–48. DOI: 10.3969/j.issn.1003-1480.2017.01.013.QU K P, XIAO W, LI L L. Study on simulating experimental method for the safety of explosive charge during penetration [J]. Initiators and Pyrotechnics, 2017(1): 46–48. DOI: 10.3969/j.issn.1003-1480.2017.01.013. [21] KIM B S, LEE J. Development of impact test device for pyroshock simulation using impact analysis [J]. Aerospace, 2022, 9(8): 407. DOI: 10.3390/aerospace9080407. [22] 周霖, 倪磊, 李东伟, 等. 炸药抗过载性能试验方法 [J]. 兵工学报, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.ZHOU L, NI L, LI D W, et al. Test method for anti-overload performance of explosives [J]. Acta Armamentarii, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074. [23] SUN M, LI J C, ZHANG H Y, et al. Effect of relative density and grain size on the internal flow field during the ballistic penetration of sand [J]. International Journal of Impact Engineering, 2024, 185: 104859. DOI: 10.1016/j.ijimpeng.2023.104859. [24] 王励自. 聚能装药对岩土介质侵彻机理研究与分析 [D]. 成都: 西南交通大学, 2002: 27–31. DOI: 10.7666/d.y505487.WANG L Z. Study and analysis on penetration of shaped charge into rock and soil media [D]. Chengdu: Southwest Jiaotong University, 2002: 27–31. DOI: 10.7666/d.y505487. [25] 李淑睿, 段卓平, 白志玲, 等. 2, 4-二硝基苯甲醚基熔铸含铝炸药冲击起爆特性 [J]. 兵工学报, 2022, 43(6): 1288–1294. DOI: 10.12382/bgxb.2021.0354.LI S R, DUAN Z P, BAI Z L, et al. Shock initiation characteristics of DNAN-based aluminized melt-cast explosive [J]. Acta Armamentarii, 2022, 43(6): 1288–1294. DOI: 10.12382/bgxb.2021.0354. [26] 覃锦程, 裴红波, 李星翰, 等. 弹黏塑性热点模型的冲击起爆临界条件 [J]. 高压物理学报, 2018, 32(3): 035202. DOI: 10.11858/gywlxb.20170656.QIN J C, PEI H B, LI X H, et al. Shock initiation thresholds of heterogeneous explosives with elastic-visco-plastic hot spot model [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. DOI: 10.11858/gywlxb.20170656. [27] 李金河, 曾代朋, 傅华, 等. 一种研究炸药反应阈值的新方法 [J]. 实验力学, 2015, 30(3): 363–366. DOI: 10.7520/1001-4888-14-271.LI J H, ZENG D P, FU H, et al. On a new method to study the reaction threshold of explosive [J]. Journal of Experimental Mechanics, 2015, 30(3): 363–366. DOI: 10.7520/1001-4888-14-271.