侵彻爆炸联合作用下超高性能混凝土遮弹层设计

程月华 吴昊 岑国华 张瑜

程月华, 吴昊, 岑国华, 张瑜. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0061
引用本文: 程月华, 吴昊, 岑国华, 张瑜. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0061
CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0061
Citation: CHENG Yuehua, WU Hao, CEN Guohua, ZHANG Yu. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0061

侵彻爆炸联合作用下超高性能混凝土遮弹层设计

doi: 10.11883/bzycj-2024-0061
基金项目: 国家自然科学基金(52308522);中国博士后科学基金(2023M742663)
详细信息
    作者简介:

    程月华(1994- ),女,博士,yhcheng@tongji.edu.cn

    通讯作者:

    吴 昊(1981- ),男,博士,教授,wuhaocivil@tongji.edu.cn

  • 中图分类号: O385

Design of ultra-high performance concrete shield against combined penetration and explosion of warheads

  • 摘要: 为了准确评估超高性能混凝土(ultra-high performance concrete, UHPC)遮弹层在战斗部侵彻爆炸作用下的损伤破坏并建立可靠的计算方法,首先,开展了UHPC靶体抗105 mm口径弹体侵彻和5 kg TNT炸药爆炸联合作用试验,获取了侵彻作用后以及侵彻与爆炸联合作用后弹靶的损伤破坏数据;然后,建立了UHPC靶体抗弹体侵彻与爆炸作用的有限元模型,通过对上述试验和已有的有限厚UHPC板埋置装药爆炸试验进行数值仿真分析,验证了有限元模型和分析方法的可靠性;最后,对比了SDB、WDU-43/B和BLU-109/B等3种典型原型战斗部侵彻与爆炸联合作用下,UHPC遮弹层和普通混凝土遮弹层的临界贯彻和震塌厚度。结果表明:3种战斗部侵彻爆炸联合作用下,遮弹层的临界贯穿厚度和震塌厚度范围分别为1.30~2.60 m和1.70~5.00 m,相应的临界贯穿系数和震塌系数范围分别为1.81~2.17和2.46~4.17;与普通混凝土遮弹层对比,3种战斗部侵彻爆炸联合作用下UHPC遮弹层的开坑直径减小了34.4%~42.4%,临界贯穿和震塌厚度分别降低了7.1%~31.6%和39.7%~52.8%。研究结果可为UHPC遮弹层的抗力评估和设计提供参考。
  • 图  1  试验弹体、炸药和靶体

    Figure  1.  Test projectile, charge and target

    图  2  试验布置

    Figure  2.  Test setup

    图  3  典型侵彻过程

    Figure  3.  Typical penetration process

    图  4  侵彻和爆炸试验后的弹靶损伤

    Figure  4.  Damaged projectile and target after penetration and explosion tests

    图  5  有限元模型

    Figure  5.  Finite element models

    图  6  侵彻作用下靶体纵切面的损伤云图以及最终的损伤分布和开裂破坏

    Figure  6.  Damage contours in cross-section and final distributions of damage and cracking under penetration

    图  7  侵彻后爆炸阶段靶体纵切面的损伤云图以及最终的损伤分布和开裂破坏

    Figure  7.  Damage contours in cross-section and final distributions of damage and cracking under explosion after penetration test

    图  8  UHPC板爆炸试验[14]

    Figure  8.  Explosion test of UHPC slab[14]

    图  9  爆炸试验的有限元模型

    Figure  9.  Finite element model of explosion test

    图  10  预制孔装药爆炸作用下UHPC板的损伤云图和开裂破坏

    Figure  10.  Damage contours and cracking failure of UHPC slab under prefabricated hole charge explosion test

    图  11  弹体侵彻爆炸作用下遮弹层的临界破坏模式

    Figure  11.  Critical failure patterns of shield under combined effect of penetration and explosion

    图  12  3种原型战斗部侵彻爆炸联合作用下遮弹层为临界贯穿破坏时遮弹层的损伤云图和开裂破坏

    Figure  12.  Damage contours and failure cracking of critical perforated shield under the combined effect of penetration and explosion of three warheads

    图  13  3种原型战斗部侵彻爆炸联合作用下遮弹层为临界震塌破坏时遮弹层的损伤云图和开裂破坏

    Figure  13.  Damage contours and failure cracking of critical scabbed shield under the combined effect of penetration and explosion of three warheads

    图  14  3种战斗部侵彻爆炸联合作用下NSC和UHPC遮弹层的对比

    Figure  14.  Comparsions of NSC and UHPC shields under the combined effect of penetration and explosion of three warheads

    图  15  SDB侵彻爆炸联合作用下遮弹层发生临界贯穿和震塌破坏时靶体中典型失效单元的压力时程曲线

    Figure  15.  Pressure-time histories of typical failure elements in the critical perforated and scabbed shields under the combined effect of penetration and explosion of SDB warhead

    表  1  UHPC的配合比

    Table  1.   Mix proportions of UHPC kg/m3

    水泥硅灰矿渣减水剂消泡剂钢纤维
    10002001200100201803156
    下载: 导出CSV

    表  2  TNT和空气的材料模型和状态方程参数

    Table  2.   Material model and equation of state parameters of TNT and air

    材料 密度/(kg·m−3 爆速/(m·s−1 爆压/GPa A/GPa B/GPa R1 R2 ω
    TNT 1630 6930 21 374 3.75 4.15 1.0 0.35
    材料 密度/(kg·m−3 初始单位体积内能/MPa 绝热指数 C1 C2 C3 C4 C5 C6
    空气 1.29 0.25 1.4 0 0 0 0.4 0.4 0
    下载: 导出CSV

    表  3  UHPC的材料模型参数

    Table  3.   Material model parameters of UHPC

    密度/(kg·m−3) 单轴压缩强度/MPa 单轴拉伸强度/MPa 剪切模量/GPa 体积模量/GPa
    2500 135.7 9.59 20.9 27.9
    下载: 导出CSV

    表  4  3种战斗部参数

    Table  4.   Parameters of three warheads

    战斗部直径/mm总质量/kg长度/mm壁厚/mm头部曲径比等效TNT质量/kg等效TNT装药高度/m
    SDB152113180010.83230.778
    WDU-43/B234454240041.591001.427
    BLU-109/B368874251025.433241.870
    下载: 导出CSV

    表  5  3种战斗部侵彻爆炸联合作用下UHPC和NSC遮弹层的计算结果

    Table  5.   Simulation results of UHPC and NSC shields under the combined effect of penetration and explosion of three warheads

    战斗部 侵彻作用 侵彻爆炸联合作用 临界贯穿
    厚度/m
    临界贯穿系数 临界震塌
    厚度/m
    临界震塌系数
    深度/m 开坑直径/m 深度/m 开坑直径/m UHPC NSC[18] UHPC NSC[18]
    SDB 0.69 0.75 0.74 1.08 1.30 1.88 1.49 1.70 2.46 3.83
    WDU-43/B 1.41 0.88 1.61 1.43 2.55 1.81 1.57 3.80 2.70 2.90
    BLU-109/B 1.20 1.15 1.62 2.05 2.60 2.17 2.13 5.00 4.17 4.66
    下载: 导出CSV
  • [1] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
    [2] O’NEIL E F, NEELEY B D, CARGILE J D. Tensile properties of very-high-strength concrete for penetration-resistant structures [J]. Shock and Vibration, 1999, 6(5/6): 237–245.
    [3] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真 [J]. 工程力学, 2018, 35(7): 167–175, 186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.

    ZHANG W H, ZHANG Y S, CHEN Z Y. Penetration test and numerical simulation of ultral-high performance concrete with a scaled earth penetrator [J]. Engineering Mechanics, 2018, 35(7): 167–175, 186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
    [4] 聂晓东, 吴祥云, 龙志林, 等. 弹体对超高性能混凝土侵彻深度的研究 [J]. 爆炸与冲击, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282.

    NIE X D, WU X Y, LONG Z L, et al. Research on penetration depth of projectiles into ultra-high performance concrete targets [J]. Explosion and Shock Waves, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282.
    [5] PENG Y, WU H, FANG Q, et al. Impact resistance of basalt aggregated UHP-SFRC/fabric composite panel against small caliber arm [J]. International Journal of Impact Engineering, 2016, 88: 201–213. DOI: 10.1016/j.ijimpeng.2015.10.011.
    [6] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [7] PENG Y, WU H, FANG Q, et al. Flat nosed projectile penetrating into UHP-SFRC target: experiment and analysis [J]. International Journal of Impact Engineering, 2016, 93: 88–98. DOI: 10.1016/j.ijimpeng.2016.02.012.
    [8] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [9] ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [10] ZHANG M H, SHARIF M S H, LU G. Impact resistance of high-strength fibre-reinforced concrete [J]. Magazine of Concrete Research, 2007, 59(3): 199–210. DOI: 10.1680/macr.2007.59.3.199.
    [11] LI J, WU C Q, HAO H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion [J]. Engineering Structures, 2015, 102: 395–408. DOI: 10.1016/j.engstruct.2015.08.032.
    [12] LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007.
    [13] LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [14] FAN Y, CHEN L, YU R Q, et al. Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges [J]. International Journal of Impact Engineering, 2022, 168: 104298. DOI: 10.1016/j.ijimpeng.2022.104298.
    [15] FAN Y, CHEN L, XIANG H B, et al. Lead spall velocity of fragments of ultra-high-performance concrete slabs under partially embedded cylindrical charge-induced explosion [J]. Defence Technology, 2023, 23: 50–59. DOI: 10.1016/j.dt.2022.02.009.
    [16] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
    [17] CHENG Y H, ZHOU F, WU H, et al. Resistance of composite target against combined effects of large caliber projectile penetration and successive charge explosion [J]. International Journal of Impact Engineering, 2022, 168: 104288. DOI: 10.1016/j.ijimpeng.2022.104288.
    [18] 程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.

    CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
    [19] YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
    [20] WEI W L, CHEN Y Q, WANG Z Q, et al. Research on damage effect of penetration and explosion integration based on volume filling method [J]. International Journal of Impact Engineering, 2023, 177: 104591. DOI: 10.1016/j.ijimpeng.2023.104591.
    [21] 杨石刚, 罗泽, 许继恒, 等. 侵彻爆炸作用下钢纤维混凝土结构的破坏模式 [J]. 爆炸与冲击, 2024, 44(1): 015102. DOI: 10.11883/bzycj-2023-0003.

    YANG S G, LUO Z, XU J H, et al. Failure modes of concrete structure under penetration and explosion [J]. Explosion and Shock Waves, 2024, 44(1): 015102. DOI: 10.11883/bzycj-2023-0003.
    [22] LS-DYNA. Keyword user’s manual. version 971 [M]. Livermore: Livermore Software Technology Corporation, 2007.
    [23] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [24] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [25] KONG X Z, FANG Q, ZHANG J H, et al. Numerical prediction of dynamic tensile failure in concrete by a corrected strain rate dependent nonlocal material model [J]. International Journal of Impact Engineering, 2020, 137: 103445. DOI: 10.1016/j.ijimpeng.2019.103445.
    [26] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [27] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  102
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-04
  • 修回日期:  2024-05-11
  • 网络出版日期:  2024-05-14

目录

    /

    返回文章
    返回