Rapid prediction and optimization method for protective effectiveness of flexibly supported plate structure under underwater explosive
-
摘要: 为实现柔性支撑板架结构在水下爆炸下防护效能的快速评估和设计优化,基于高置信度仿真,建立了水下爆炸作用下柔性支撑板架防护效能的评估方法并开展试验验证。采用验证后的高置信度仿真方法生成样本工况数据,并通过径向基神经网络模型构建能快速评估柔性支撑板架结构防护效能的代理模型。结合多岛遗传算法对建立的代理模型进行防护结构高防护效能和轻量化的多目标优化并获取最优结构参数。建立的快速预报与优化方法可以为相关的结构设计优化提供重要的技术支撑。Abstract: In order to make a rapid assessment and design optimization of the protective performance of flexibly supported plate structure subjected to underwater explosion, a high-confidence simulation method is first established for the protective performance of flexibly supported plate structure subjected to underwater explosion. Then, underwater explosion tests were conducted on the flexibly supported plate structure to validate the computational accuracy of the developed high-confidence simulation method by comparing the deformation between the simulation results and the experimental results. The thickness of the blast-facing panel, the thickness of the flexible supports, and the thickness of the stiffened web are identified as the three key characteristic parameters that affect the protective performance of the flexibly supported plate. Utilizing optimized Latin-hypercube sampling method, 15 sample conditions are extracted from the sample space. The validated high-confidence simulation method is then used to generate protective performance data for these 15 sample conditions, which is subsequently employed to construct a proxy model for rapid assessment of the protective performance of the flexibly supported plates by using a radial basis function (RBF) neural network. The accuracy of the proxy model is assessed by using 5 randomly selected conditions, and the results show that the prediction error is within 7%, indicating a high level of prediction accuracy. The multi-island genetic algorithm (MIGA) is applied to the proxy model to perform multi-objective optimization and obtain a pareto set of solutions. The condition with the maximum specific ultimate energy absorption per unit mass is selected as the optimal structural parameters for the flexibly supported plate, achieving the goals on enhancing the ultimate protective performance and reducing the total structural mass. The rapid prediction and optimization method developed in this study provides significant technical support for the design and optimization of flexibly supported plate, and ensures both effective protection and weight savings.
-
表 1 钢材的J-C本构参数和失效参数设置[10]
Table 1. J-C constitutive and failure parameter settings for steel material[10]
A/MPa B/MPa n m C 破坏位移/μm 706 648 0.58 0 0.01 1 D1 D2 D3 D4 D5 ${\dot \varepsilon _{ {0}}} $/s−1 0.272 −0.073 −0.65 −0.003 0 1 表 2 柔性支撑板架结构各主要部分的极限吸能
Table 2. The ultimate energy absorption of the main parts of the flexibly supported plate structure on the ship’s side
柔性支撑板架结构主要部分 极限吸能/MJ 吸能占总能量比例/% 柔性支撑板架结构 112.21 100 迎爆面面板 52.85 47.1 水平弧形板 22.17 19.8 水平弧形板肘板 1.05 0.9 迎爆面T形筋腹板 10.40 9.3 迎爆面T形筋面板 2.75 2.5 背爆面面板 2.84 2.5 表 3 Q355B钢的J-C本构参数与失效参数设置[12]
Table 3. J-C constitutive and failure parameter settings for Q355B steel[12]
A/MPa B/MPa n m C 破坏位移/μm 360 300 0.547 0 0.046 1 D1 D2 D3 D4 D5 $ {\dot \varepsilon _{ {0}}} $/s−1 −0.091 1.532 −0.091 0 0 1 表 4 试验结果与高精度仿真结果比较
Table 4. Comparison between experimental results and high-precision simulation results
最大挠度 横向变形长度 垂向变形长度 仿真/m 实验/m 误差/% 仿真/m 实验/m 误差/% 仿真/m 实验/m 误差/% 0.241 0.233 3.4 1.358 1.342 1.2 2.565 2.546 0.7 表 5 网格尺寸对于计算结果的影响
Table 5. The influence of grid size on calculation results
网格尺寸/mm 网格数量 结构总吸能/kJ 最大挠度 仿真/m 实验/m 误差/% 20 80094 1130 0.241 0.233 3.4 30 54459 1179 0.245 0.233 5.2 40 37334 1206 0.246 0.233 5.5 表 6 样本点及计算结果
Table 6. Sample points and calculation results
抽样工况 tb/mm th/mm tfb/mm Et/MJ mt/t 1-1 26.57 9.71 4.00 199.2 79.6 1-2 23.71 6.29 12.00 151.2 72.7 1-3 24.86 5.71 4.57 189.9 72.3 1-4 22.57 8.57 5.14 162.2 69.5 1-5 27.71 4.57 6.86 207.5 78.9 1-6 26.00 8.00 8.57 180.3 78.4 1-7 24.29 12.00 6.29 164.1 77.0 1-8 23.14 5.14 8.00 163.4 68.9 1-9 29.43 6.86 9.71 208.1 85.9 1-10 30.00 7.43 5.71 226.8 86.3 1-11 28.29 10.86 7.43 198.5 85.8 1-12 27.14 4.00 10.86 189.1 78.4 1-13 28.86 10.29 11.43 189.5 88.1 1-14 25.43 11.43 10.29 160.2 80.6 1-15 22.00 9.14 9.14 140.0 70.1 表 7 RBF代理模型在检验工况上的精度检测
Table 7. Accuracy detection of RBF proxy model in testing conditions
检验工况 tb/mm th/mm tfb/mm Et,d/MJ Et,f/MJ re/% 2-1 22 6 4 167.0 157.1 6.3 2-2 24 8 6 172.6 174.6 −1.2 2-3 26 12 12 157.6 163.2 −3.4 2-4 28 8 4 184.7 178.4 −3.5 2-5 30 4 8 224.3 213.7 −4.9 表 8 优化得到的Pareto前沿解集
Table 8. Optimized Pareto frontier solution set
Pareto解集工况 tb/mm th/mm tfb/mm Et,d/MJ mt/t γ/(MJ·t−1) 3-1 27.76 4.01 5.32 214.7 78.00 2.75 3-2 24.66 4.33 4.51 191.0 70.63 2.70 3-3 28.45 5.31 4.04 220.9 79.58 2.78 3-4 26.62 5.57 4.06 207.2 76.19 2.72 3-5 25.50 5.96 4.99 193.3 74.19 2.61 -
[1] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究 [J]. 爆炸与冲击, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-7.ZHU X, ZHANG Z H, LIU R Q, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-7. [2] 侯海量, 张成亮, 朱锡. 水下舷侧防雷舱结构防护效能评估方法研究 [J]. 中国舰船研究, 2013, 8(3): 22–26. DOI: 10.3969/j.issn.1673-3185.2013.03.005.HOU H L, ZHANG C L, ZHU X. Evaluation methods of the performance of multi-layered blast protection blisters subjected to underwater contact explosions [J]. Chinese Journal of Ship Research, 2013, 8(3): 22–26. DOI: 10.3969/j.issn.1673-3185.2013.03.005. [3] 吴林杰, 朱锡, 侯海量, 等. 舰船水下防护结构舷侧空舱内部结构优化 [J]. 海军工程大学学报, 2017, 29(2): 17–21. DOI: 10.7495/j.issn.1009-3486.2017.02.004.WU L J, ZHU X, HOU H L, et al. Optimization research on broadside cabin inside structure of warship underwater defensive structure [J]. Journal of Naval University of Engineering, 2017, 29(2): 17–21. DOI: 10.7495/j.issn.1009-3486.2017.02.004. [4] 张弩, 明付仁, 吴国民, 等. 舰船舷侧防御纵壁弧形支撑结构水下接触爆炸的防护效果研究 [J]. 船舶力学, 2019, 23(10): 1257–1265. DOI: 10.3969/j.issn.1007-7294.2019.10.012.ZHANG N, MING F R, WU G M, et al. Study on the protection effects of arc-shaped structures on warship broadside subjected to underwater contact explosions [J]. Journal of Ship Mechanics, 2019, 23(10): 1257–1265. DOI: 10.3969/j.issn.1007-7294.2019.10.012. [5] 柴崧淋, 侯海量, 金键, 等. 水下接触爆炸下舷侧防雷舱吸能结构形式试验研究 [J]. 兵工学报, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328.CHAI S L, HOU H L, JIN J, et al. Experimental study on the energy-absorbing structure of broadside defense cabin subjected to underwater contact explosion [J]. Acta Armamentarii, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328. [6] 姚凤翔, 王鸿东, 张海华, 等. 数据驱动的可调螺距桨船舶油耗模型及航速优化 [J]. 中国造船, 2023, 64(2): 226–239. DOI: 10.3969/j.issn.1000-4882.2023.02.020.YAO F X, WANG H D, ZHANG H H, et al. Data-driven fuel consumption model and speed optimization of ships with controllable pitch propeller [J]. Shipbuilding of China, 2023, 64(2): 226–239. DOI: 10.3969/j.issn.1000-4882.2023.02.020. [7] 张晓东, 权晓波, 王占莹. 代理模型在水下航行体空泡压力预示的应用研究 [J]. 船舶力学, 2018, 22(1): 12–21. DOI: 10.3969/j.issn.1007-7294.2018.01.002.ZHANG X D, QUAN X B, WANG Z Y. Research on the prediction method of unsteady cavity pressure development of underwater vehicle based on surrogate model [J]. Journal of Ship Mechanics, 2018, 22(1): 12–21. DOI: 10.3969/j.issn.1007-7294.2018.01.002. [8] 强以铭, 陈诗楠, 陈奕宏, 等. 基于机器学习的船舶螺旋桨敞水性能预报代理模型 [J]. 中国造船, 2022, 63(5): 181–188. DOI: 10.3969/j.issn.1000-4882.2022.05.017.QIANG Y M, CHEN S N, CHEN Y H, et al. Prediction of open-water characteristics of ship propellers based on machine learning surrogate model [J]. Shipbuilding of China, 2022, 63(5): 181–188. DOI: 10.3969/j.issn.1000-4882.2022.05.017. [9] 王卓, 孔祥韶, 吴卫国. 基于遗传算法的邮轮舷侧开口结构补强技术研究 [J]. 中国造船, 2023, 64(6): 86–100. DOI: 10.3969/j.issn.1000-4882.2023.06.008.WANG Z, KONG X S, WU W G. Research on reinforcement technique for side shell with openings on curise ships based on genetic algorithm [J]. Shipbuilding of China, 2023, 64(6): 86–100. DOI: 10.3969/j.issn.1000-4882.2023.06.008. [10] 孟利平. 应变率和应力三轴度对船用钢变形和断裂的影响研究 [D]. 无锡: 中国船舶科学研究中心, 2016: 83–89.MENG L P. Influence of strain rate and stress triaxiality on the deformation and fracture behavior of ship hull steel [D]. Wuxi: China Ship Scientific Research Center, 2016: 83–89. [11] 郭桐桐, 张伦平, 伍星星, 等. 平板和板架结构在水下非接触爆炸下冲击波载荷与速度场等效关系研究 [J]. 振动与冲击, 2024, 43(16): 146–151.GUO T T, ZHANG L P, WU X X, et, al. Study on the equivalent relationship between shock wave load and velocity field load of plate and plate frame structure under underwater non-contact explosion [J]. Journal of Vibration and Shock, 2024, 43(16): 146–151. [12] 伍星星, 刘建湖, 陈嘉伟, 等. 冲击载荷作用下Q345钢失效应变与单元尺寸关系研究 [J]. 船舶力学, 2023, 27(2): 260–271. DOI: 10.3969/j.issn.1007-7294.2023.02.010.WU X X, LIU J H, CHEN J W, et al. Influence of element size on failure strain of Q345B steel under intensive loading [J]. Journal of Ship Mechanics, 2023, 27(2): 260–271. DOI: 10.3969/j.issn.1007-7294.2023.02.010.