Ta-Hf-Nb-Zr体系高熵合金J-C模型及应用试验

李海峰 门建兵 金文 刘旭东

李海峰, 门建兵, 金文, 刘旭东. Ta-Hf-Nb-Zr体系高熵合金J-C模型及应用试验[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0069
引用本文: 李海峰, 门建兵, 金文, 刘旭东. Ta-Hf-Nb-Zr体系高熵合金J-C模型及应用试验[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0069
LI Haifeng, MEN Jianbing, JIN Wen, LIU Xudong. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0069
Citation: LI Haifeng, MEN Jianbing, JIN Wen, LIU Xudong. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0069

Ta-Hf-Nb-Zr体系高熵合金J-C模型及应用试验

doi: 10.11883/bzycj-2024-0069
基金项目: “叶企孙”科学基金(U2241234)
详细信息
    作者简介:

    李海峰(1998- ),男,硕士研究生,lihaifeng3815@163.com

    通讯作者:

    门建兵(1973- ),男,博士,教授,menjb@bit.edu.cn

  • 中图分类号: O389; TJ410.4

J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test

  • 摘要: 针对包含高密度、高热值元素的高熵合金材料在聚能战斗部药型罩上的应用问题,选取Ta-Hf-Nb-Zr体系高熵合金为研究对象,采用INSTRON材料试验机、分离式霍普金森压杆试验平台,探寻该高熵合金在应变率为10−3~103 s−1、温度为25~900 ℃以及应力三轴度为0.33~0.89条件下的力学响应规律,基于静动态力学性能试验结果,获取该合金的Johnson-Cook(J-C)本构方程参数及损伤失效模型参数,并建立爆炸加载下高熵合金爆炸成型弹丸(explosively formed projectile,EFP)数值模型。开展EFP成型脉冲X射线验证试验,结果显示:117 μs时,高熵合金EFP成型较为完整,EFP长度为51.1 mm,直径为12.27 mm;187 μs时,EFP尾部产生3处断裂,头部长度为24.3 mm,直径为12.27 mm,EFP速度为2496.3 m/s。模拟与试验的EFP长度、直径以及速度的误差均小于8.2%,模拟的断裂形态与试验结果基本一致,J-C模型有效预测了爆炸加载条件下高熵合金EFP的成型状态。
  • 图  1  光滑及带缺口圆棒试件

    Figure  1.  Smooth and notched round bars specimens

    图  2  不同应变率下光滑圆棒的静态应力-应变曲线及拉断试件

    Figure  2.  Static stress-strain curves of smooth round bars under different strain rates and specimens with tensile fracture

    图  3  不同缺口半径下带缺口圆棒试件的静态力-位移曲线及拉断试件

    Figure  3.  Static force-displacement curves of notched round bar specimens with different notch radii and specimens with tensile fracture

    图  4  不同温度下带光滑圆棒试件的静态应力-应变曲线及拉断试件

    Figure  4.  Static stress-strain curves of smooth round bars at different temperatures and specimens with tensile fracture

    图  5  动态压缩试件

    Figure  5.  Dynamic compression specimen

    图  6  SHPB试验平台

    Figure  6.  SHPB testing platform

    图  7  不同应变率下高熵合金的动态应力-应变曲线

    Figure  7.  Dynamic stress-strain curves of HEA at different strain rates

    图  8  高温高应变率下合金的应力-应变曲线

    Figure  8.  Stress-strain curves of alloy under high temperature and high strain rate

    图  9  失效应变与应力三轴度的关系

    Figure  9.  Relationship between fracture strain and stress triaxiality

    图  10  失效应变与无量纲应变率的关系

    Figure  10.  Relationship between fracture strain and the logarithmic non-dimensional strain rate

    图  11  失效应变与温度的关系

    Figure  11.  Relationship between fracture strain and temperature

    图  12  EFP装药的结构示意图

    Figure  12.  Geometric model of EFP charge structure

    图  13  EFP成型数值计算的网格模型

    Figure  13.  Grid model for numerical calculation of EFP forming

    图  14  EFP战斗部的部件

    Figure  14.  Components of EFP warhead

    图  15  脉冲X射线成像示意图

    Figure  15.  Schematic diagram of pulse X-ray imaging

    图  16  X射线成像试验的场地布置

    Figure  16.  Layout of X-ray imaging test site

    图  17  数值模拟与脉冲X射线试验的EFP成型形态对比

    Figure  17.  Comparison of EFP forming morphology between numerical simulation and pulsed X-ray testing

    表  1  不同应变率下光滑圆棒试件的失效应变

    Table  1.   Failure strain of smooth round bar specimens at different strain rates

    试件编号应变率/s−1εf
    1-10.0010.67
    1-20.0100.73
    1-30.0500.86
    1-40.1000.87
    下载: 导出CSV

    表  2  不同缺口半径下缺口试件的失效应变

    Table  2.   Failure strain of notch specimens under different notch radii

    试件编号 σ* εf
    2-1 0.89 0.35
    2-2 0.74 0.46
    2-3 0.56 0.53
    2-4 0.47 0.50
    2-5 0.43 0.55
    2-6 0.33 0.67
    下载: 导出CSV

    表  3  高温拉伸试验中光滑圆棒试件的失效应变

    Table  3.   Failure strain of smooth round bar specimens in high temperature tensile test

    试件编号 温度/℃ εf
    3-1 100 0.60
    3-2 300 0.34
    3-3 500 0.17
    3-4 700 0.08
    下载: 导出CSV

    表  4  不同应变率下高熵合金的屈服强度

    Table  4.   HEA yield stress under different strain rates

    应变率/s−1 屈服强度/MPa
    2160 639.1
    3000 648.4
    3600 650.8
    4200 679.0
    下载: 导出CSV

    表  5  不同温度条件下高熵合金的屈服强度

    Table  5.   Variation of yield strength of HEA under different temperatures

    温度/℃ 屈服强度/MPa
    300 353.7
    700 295.3
    800 248.9
    900 233.7
    下载: 导出CSV

    表  7  药型罩材料的J-C本构方程参数

    Table  7.   J-C constitutive equation parameters for liner materials

    A/MPa B/MPa n C m
    270.2 571.3 0.79 0.062 0.638
    下载: 导出CSV

    表  6  药型罩材料的Grüneisen状态方程参数[5]

    Table  6.   Grüneisen state equation parameters for liner materials

    ρ/(g·cm−3) γ C0/(m·s−1) S
    11.7 1.1147 3213.0 1.1218
    下载: 导出CSV

    表  8  药型罩材料的J-C失效方程参数

    Table  8.   J-C failure equation parameters for liner materials

    D1 D2 D3 D4 D5
    0.24 0.78 −1.98 0.076 −3.269
    下载: 导出CSV
  • [1] 李天昕, 王书道, 卢一平, 等. 高熵合金材料研究进展与展望 [J]. 中国工程科学, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016.

    LI T X, WANG S D, LU Y P, et al. Research progress and prospect of high-entropy alloy materials [J]. Strategic Study of CAE, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016.
    [2] 王先珍, 王一涵, 俞嘉彬, 等. 高熵合金性能特点与应用展望 [J]. 精密成形工程, 2022, 14(11): 73–80. DOI: 10.3969/j.issn.1674-6457.2022.11.008.

    WANG X Z, WANG Y H, YU J B, et al. A brief review about perspective and properties of high-entropy alloys [J]. Journal of Netshape Forming Engineering, 2022, 14(11): 73–80. DOI: 10.3969/j.issn.1674-6457.2022.11.008.
    [3] 张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究 [D]. 长沙: 国防科学技术大学, 2017: 86–87. DOI: 10.27052/d.cnki.gzjgu.2017.000221.

    ZHANG Z R. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 86–87. DOI: 10.27052/d.cnki.gzjgu.2017.000221.
    [4] LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening” tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005.
    [5] 陈海华, 张先锋, 赵文杰, 等. W25Fe25Ni25Mo25高熵合金高速侵彻细观结构演化特性 [J]. 力学学报, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.

    CHEN H H, ZHANG X F, ZHAO W J, et al. Effect of microstructure on flow behavior during penetration of W25Fe25Ni25Mo25 high-entropy alloy projectile [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.
    [6] 鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.

    YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
    [7] 马田, 吕永柱, 张博, 等. TiZrNbVAl高熵合金弹体侵彻双层钢板可行性研究 [J]. 兵器装备工程学报, 2023, 44(11): 23–28. DOI: 10.11809/bqzbgcxb2023.11.003.

    MA T, LYU Y Z, ZHANG B, et al. Feasibility study on TiZrNbVAl high-entropy alloy projectile penetrating double layer steel plates [J]. Journal of Ordnance Equipment Engineering, 2023, 44(11): 23–28. DOI: 10.11809/bqzbgcxb2023.11.003.
    [8] 马胜国, 王志华. CoCrFeNiAl x系高熵合金的动态力学性能和本构关系 [J]. 爆炸与冲击, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293.

    MA S G, WANG Z H. Dynamic mechanical properties and constitutive relations of CoCrFeNiAl x high entropy alloys [J]. Explosion and Shock Waves, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293.
    [9] LI Z, ZHAO S, DIAO H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: remarkable resistance to shear failure [J]. Scientific Reports, 2017, 7(1): 42742. DOI: 10.1038/srep42742.
    [10] 陈嘉琳, 李述涛, 陈叶青. 考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究 [J]. 爆炸与冲击, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324.

    CHEN J L, LI S T, CHEN Y Q. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation [J]. Explosion and Shock Waves, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324.
    [11] 蒋文灿, 程祥珍, 梁斌, 等. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.

    JIANG W C, CHENG X Z, LIANG B, et al. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner [J]. Explosion and Shock Waves, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.
    [12] 付恒, 蒋建伟, 王树有, 等. 爆炸成型弹丸药型罩用高密度合金选取准则 [J]. 兵工学报, 2022, 43(9): 2330–2338. DOI: 10.12382/bgxb.2021.0826.

    FU H, JIANG J W, WANG S Y, et al. High-density alloy selection criteria for liners of explosively formed projectiles [J]. Acta Armamentarii, 2022, 43(9): 2330–2338. DOI: 10.12382/bgxb.2021.0826.
    [13] 门建兵, 卢易浩, 蒋建伟, 等. 杆式EFP用钽钨合金JC失效模型参数 [J]. 高压物理学报, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.

    MEN J B, LU Y H, JIANG J W, et al. Johnson-cook failure model parameters of tantalum-tungsten alloy for rod-shaped EFP [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.
    [14] 陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
    [15] 门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京: 北京理工大学出版社, 2015: 146–147.

    MEN J B, JIANG J W, WANG S Y. Foundation of numerical simulation for explosion and shock problems [M]. Beijing: Beijing Institute of Technology Press, 2015: 146–147.
    [16] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [17] 朱志鹏, 门建兵, 蒋建伟, 等. 大长径比钽爆炸成型弹丸控制研究 [J]. 兵工学报, 2018, 39(S1): 29–36. DOI: 10.3969/j.issn.1000-1093.2018.S1.005.

    ZHU Z P, MEN J B, JIANG J W, et al. Forming control of tantalum EFP with large aspect ratio [J]. Acta Armamentarii, 2018, 39(S1): 29–36. DOI: 10.3969/j.issn.1000-1093.2018.S1.005.
    [18] 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [19] 彭嘉诚. 后效增强自旋式EFP技术研究 [D]. 北京: 北京理工大学, 2022: 98–99.

    PENG J C. Research on technologies of spin-up EFP with enhanced aftereffects [D]. Beijing: Beijing Institute of Technology, 2022: 98–99.
    [20] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2019: 109.
    [21] 徐恒威, 梁斌, 刘俊新, 等. 药型罩形位偏差对聚能装药射流成型及其破甲过程影响 [J]. 含能材料, 2023, 31(10): 1049–1058. DOI: 10.11943/CJEM2022292.

    XU H W, LIANG B, LIU J X, et al. Influence of shape and position deviation of liner on jet forming and penetration process of shaped charge [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1049–1058. DOI: 10.11943/CJEM2022292.
  • 加载中
图(17) / 表(8)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  23
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-07-25
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回