高空强爆炸X射线辐照铝靶板动响应的数值模拟

余润洲 张昆 汤文辉

余润洲, 张昆, 汤文辉. 高空强爆炸X射线辐照铝靶板动响应的数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0082
引用本文: 余润洲, 张昆, 汤文辉. 高空强爆炸X射线辐照铝靶板动响应的数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0082
YU Runzhou, ZHANG Kun, TANG Wenhui. A dynamic response simulation of aluminum plate target induced by high-altitude nuclear detonation X-ray[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0082
Citation: YU Runzhou, ZHANG Kun, TANG Wenhui. A dynamic response simulation of aluminum plate target induced by high-altitude nuclear detonation X-ray[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0082

高空强爆炸X射线辐照铝靶板动响应的数值模拟

doi: 10.11883/bzycj-2024-0082
详细信息
    作者简介:

    余润洲(2001- ),男,硕士研究生,yurunzhou19@nudt.edu.cn

    通讯作者:

    张 昆(1989- ),男,博士,讲师,zhangkun1989@nudt.edu.cn

  • 中图分类号: O347.3; O434.19

A dynamic response simulation of aluminum plate target induced by high-altitude nuclear detonation X-ray

  • 摘要: 高空强爆炸所产生的X射线辐照至导弹壳体结构时产生的汽化反冲冲量(blow-off impulse,BOI)及热激波,能够引起目标的动响应破坏。现有的Whitener、BBAY和MBBAY理论模型仅能给出一维近似BOI值,无法处理复杂三维情况并给出对应的热激波峰值压力p,因此对该问题的研究非常依赖数值计算。利用X射线热激波数值计算程序TSHOCK3D对矩形铝靶板在0.1~3.0 keV范围的普朗克黑体温度和220~400 J/cm2辐射能通量下的汽化反冲冲量及峰值压力进行计算,并与理论模型作了对比分析。结果表明,TSHOCK3D程序可以可靠地给出结果,正辐照靶板中心处近似一维工况下的BOI与Whitener、BBAY和MBBAY三个理论模型下的BOI基本相符。通过单变量分析可得,靶板中BOI和峰值压力p均与入射能通量呈近似线性关系;而对于不同的黑体温度,BOI和峰值压力则在1.5~2 keV处存在极大值。
  • 图  1  X射线热激波产生原理示意图[1]

    Figure  1.  Schematic of X-ray thermal shock wave generation[1]

    图  2  计算流程图

    Figure  2.  Flowchart of the simulation

    图  3  靶板及X射线载荷示意图[16]

    Figure  3.  Schematic of Target and X-ray loading[16]

    图  4  100 ns时的能量沉积云图

    Figure  4.  Energy deposition contour at 100 ns

    图  5  二维及三维压力云图

    Figure  5.  2D and 3D pressure contours

    图  6  TSHOCK3D计算结果与理论模型结果的对比

    Figure  6.  Comparison between TSHOCK3D calculation and theoretical models

    图  7  BOI与峰值压力计算结果

    Figure  7.  Results of BOI and peak pressure

    图  8  BOI和峰值压力随能通量的变化曲线

    Figure  8.  BOI and peak pressure varying with flux

    图  9  BOI和峰值压力随黑体温度的变化曲线

    Figure  9.  BOI and peak pressure varying with temperature

    表  1  不同核武器爆炸的αi$kT_i $虚拟参考值[2]

    Table  1.   Reference values of αi and kTi for different nuclear explosions[2]

    爆炸类型 i αi kTi/keV
    裂变武器 1 1.00 1.0
    普通热核武器 1 0.30 0.8~1.0
    2 0.67 3.0~4.0
    3 0.03 12.0~14.0
    增强辐射武器 1 0.05 0.8~1.0
    2 0.70 3.0~5.0
    3 0.25 13.0~14.0
    下载: 导出CSV

    表  2  铝的相关参数[19]

    Table  2.   Parameters of aluminum[19]

    弹性参数 塑性参数 物态方程参数
    E/GPa G/GPa v $ {\sigma }_{{\mathrm{y}}} $/GPa $ {\rho }_{0} $/(g·cm−3 $ {c}_{0} $/(m·s−1 s E0/(kJ·g) $ {\varGamma }_{0} $
    71.1 27.1 0.33 0.5 2.7 5400 1.35 10.89 2.13
    下载: 导出CSV
  • [1] ZHANG K, TANG W H, FU K K. Modeling of dynamic behavior of carbon fiber-reinforced polymer (CFRP) composite under x-ray radiation [J]. Materials, 2018, 11(1): 143. DOI: 10.3390/ma11010143.
    [2] 王建国. 高空核爆炸效应参数手册 [M]. 北京: 原子能出版社, 2010: 6–9.
    [3] REMO J L, FURNISH M D, LAWRENCE R J. Soft X-ray shock loading and momentum coupling in meteorite and planetary materials [J]. AIP Conference Proceedings, 2012, 1426(1): 879–882. DOI: 10.1063/1.3686418.
    [4] REMO J L, FURNISH M D, LAWRENCE R J. Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials [J]. Journal of Plasma Physics, 2013, 79(2): 121–141. DOI: 10.1017/s0022377812000712.
    [5] REMO J L, LAWRENCE R J, JACOBSEN S B, et al. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation [J]. Acta Astronautica, 2016, 129: 384–388. DOI: 10.1016/j.actaastro.2016.09.026.
    [6] REMO J L, FURNISH M D. Analysis of Z-pinch shock wave experiments on meteorite and planetary materials [J]. International Journal of Impact Engineering, 2008, 35(12): 1516–1521. DOI: 10.1016/j.ijimpeng.2008.07.075.
    [7] LIBERATORE S, GAUTHIER P, WILLIEN J L, et al. First indirect drive inertial confinement fusion campaign at laser megajoule [J]. Physics of Plasmas, 2023, 30(12): 122707. DOI: 10.1063/5.0176446.
    [8] HURRICANE O A, PATEL P K, BETTI R, et al. Physics principles of inertial confinement fusion and U. S. program overview [J]. Reviews of Modern Physics, 2023, 95(2): 025005. DOI: 10.1103/RevModPhys.95.025005.
    [9] DO A, CASEY D T, CLARK D S, et al. Measurements of improved stability to achieve higher fuel compression in ICF [J]. Physics of Plasmas, 2023, 30(11): 112703. DOI: 10.1063/5.0167424.
    [10] LONGLEY R W. Analytical relationships for estimating the effects of X-rays on materials: AFRPL-TR-74-52 [R]. 1974. DOI: 10.21236/ad0786926.
    [11] LAWRENCE R J. The equivalence of simple models for radiation-induced impulse [C]// SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter-1991. Amsterdam: North Holland, 1992: 785–788. DOI: 10.1016/B978-0-444-89732-9.50179-5.
    [12] 李清源, 王国庆, 吴军, 等. 脉冲电子束产生喷射冲量的实验研究 [J]. 爆炸与冲击, 1991, 11(4): 339–345. DOI: 10.11883/1001-1455(1991)04-0339-7.
    [13] LI Q Y, WANG G Q, WU J, et al. Experimental studies of blow-off impulse generated by a pulse electron beam [J]. Explosion and Shock Waves, 1991, 11(4): 339–345.
    [14] 彭常贤, 胥永亮, 徐建波. 电子束辐照平板靶产生喷射冲量的实验研究 [J]. 高压物理学报, 1994, 8(1): 23–29. DOI: 10.11858/gywlxb.1994.01.004.
    [15] PENG C X, XU Y L, XU J B. Experimental studies of the blowoff impulses produced in the flat plate targets bombarded by electron beam [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 23–29.
    [16] 张朝辉, 张思群, 任晓东, 等. 基于Z箍缩X射线源的热-力学效应实验 [J]. 爆炸与冲击, 2021, 41(9): 094101. DOI: 10.11883/bzycj-2021-0124.

    ZHANG Z H, ZHANG S Q, REN X D, et al. Experiments for thermomechanical effects based on Z-pinch X-ray sources [J]. Explosion and Shock Waves, 2021, 41(9): 094101. DOI: 10.11883/bzycj-2021-0124.
    [17] HUANG X, TANG W H, Jiang B H. A modified anisotropic PUFF equation of state for composite materials [J]. Journal of Composite Materials, 2012, 46(5): 499–506. DOI: 10.1177/0021998311415724.
    [18] 张昆, 汤文辉, 冉宪文. X射线三维热力学效应模拟软件: CN2016SR110024 [P]. 2016.
    [19] WANG D W, GAO Y, WANG S, et al. Study on x-ray induced two-dimensional thermal shock waves in carbon/phenolic [J]. Materials, 2021, 14(13): 3553. DOI: 10.3390/ma14133553.
    [20] LIN P, CHEN R H, WANG D W. Studies on the thermodynamic properties of C/ph irradiated by intense electron beams [J]. Coatings, 2022, 12(8): 1128. DOI: 10.3390/coatings12081128.
    [21] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 2版. 北京: 高等教育出版社, 2008.

    TANG W H, ZHANG R Q. Introduction to theory and computation of equations of state [M]. 2nd ed. Beijing: Higher Education Press, 2008.
    [22] 张昆. 各向异性复合材料的本构关系及其在X射线辐照下动力学响应的三维有限元模拟 [D]. 长沙: 国防科技大学, 2018.

    ZHANG K. Constitutive relationship of anisotropic composites and its application in a FEM simulation of the dynamic response within the X-ray radiation in 3D condition [D]. Changsha: National University of Defense Technology, 2018.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  28
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27
  • 修回日期:  2024-05-30
  • 网络出版日期:  2024-05-30

目录

    /

    返回文章
    返回