不同海拔高度炮口冲击波动态演化特性数值模拟研究

康越 马天 王俊龙 张逸之 张文博 韩笑 栗志杰

康越, 马天, 王俊龙, 张逸之, 张文博, 韩笑, 栗志杰. 不同海拔高度炮口冲击波动态演化特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(12): 121421. doi: 10.11883/bzycj-2024-0108
引用本文: 康越, 马天, 王俊龙, 张逸之, 张文博, 韩笑, 栗志杰. 不同海拔高度炮口冲击波动态演化特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(12): 121421. doi: 10.11883/bzycj-2024-0108
KANG Yue, MA Tian, WANG Junlong, ZHANG Yizhi, ZHANG Wenbo, HAN Xiao, LI Zhijie. Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes[J]. Explosion And Shock Waves, 2024, 44(12): 121421. doi: 10.11883/bzycj-2024-0108
Citation: KANG Yue, MA Tian, WANG Junlong, ZHANG Yizhi, ZHANG Wenbo, HAN Xiao, LI Zhijie. Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes[J]. Explosion And Shock Waves, 2024, 44(12): 121421. doi: 10.11883/bzycj-2024-0108

不同海拔高度炮口冲击波动态演化特性数值模拟研究

doi: 10.11883/bzycj-2024-0108
详细信息
    作者简介:

    康 越(1989- ),男,博士,高级工程师,goodluckky@163.com

    通讯作者:

    栗志杰(1987- ),男,博士,助理研究员,lizhijie_20082006@163.com

  • 中图分类号: O382

Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes

  • 摘要: 基于耦合的欧拉-拉格朗日(coupled Eulerian-Lagrangian, CEL)法建立了“火药燃气-炮管/炮弹-空气”流固耦合模型,分别对低海拔(海拔高度0 m)、中海拔(海拔高度1000 m)、亚高海拔(海拔高度3000 m)和高海拔(海拔高度5000 m)环境下大口径火炮的发射过程进行了数值模拟,研究了海拔高度对炮口冲击波动态演化过程的影响机制。模拟结果表明,大口径火炮炮口冲击波动态演化过程具有显著的方向依赖性,炮口冲击波峰值压力随海拔高度的增加而降低,峰值压力与环境压力近似呈线性关系;形成于炮口制退器处的侧向冲击波主导了操炮人员典型作业区域(炮口后方3~5 m)的冲击波超压峰值,在不同海拔条件下进行火炮射击都可致操炮人员听觉器官发生损伤,并对非听觉器官造成威胁。因此,亟需提高操炮人员个体装备防护性能,从而形成对眼、耳、肺和脑等重要器官的有效保护。
  • 图  1  “火药燃气-炮管/炮弹-空气”流固耦合模型

    Figure  1.  Fluid-structure interaction model of gunpowder gas-barrel/cannonball-air

    图  2  炮弹前平面激波的动态演化过程

    Figure  2.  Dynamic evolution process of plane shock wave before cannonball

    图  3  炮弹运动到不同位置时火药燃气的压力、炮弹的速度和弹前的激波压力

    Figure  3.  Gunpowder gas pressure and cannonball velocity as well as shock wave pressure before cannonball when the cannonball moves to different positions

    图  4  初始冲击波流场速度和流场压力的动态演化

    Figure  4.  Dynamic evolution of flow field velocity and pressure of initial shock wave

    图  5  初始冲击波波系结构

    Figure  5.  Muzzle blast loaded structure of initial shock wave

    图  6  炮口冲击波火药燃气分布、流场压力与流场速度的动态演化

    Figure  6.  Dynamic evolution of gunpowder gas distribution, flow field pressure and velocity of muzzle blast

    图  7  平原与高原环境下的炮弹速度

    Figure  7.  Velocity of cannonball in the plain and plateau environments

    图  8  低海拔与高海拔环境下炮口流场压力对比

    Figure  8.  Comparison of muzzle flow field pressure between the plateau and plain environments

    图  9  平原与高原环境下火药燃气分布

    Figure  9.  Distribution of gunpowder gas in the plain and plateau environments

    图  10  典型传播方向与测点位置布置示意图

    Figure  10.  Schematic diagram of typical propagation direction and measuring points

    图  11  炮口冲击波在不同传播方向上的动态演化特性

    Figure  11.  Dynamic evolution characteristics of the muzzle blast along different orientations

    图  12  炮口冲击波在R4与R5特征位置处的动态演化过程

    Figure  12.  Dynamic evolution process of muzzle blast at the characteristic positions of R4 and R5

    图  13  炮口冲击波超压峰值衰减系数

    Figure  13.  Attenuation coefficient of muzzle blast peak overpressure

    图  14  不同海拔高度特征位置处峰值压力

    Figure  14.  Peak pressure of characteristic positions at different altitudes

    图  15  特征位置处峰值压力与不同海拔高度下参考大气压力之间的关系

    Figure  15.  Relationship between the peak pressure of characteristic positions and the reference atmospheric pressure at different altitudes

    表  1  不同海波高度下操炮人员典型作业区域特征位置处的超压峰值和器官损伤持续时间

    Table  1.   Peak overpressure of characteristic positions in the typical operating zone of artillery operators at different altitudes and the corresponding duration time of organ damage

    海拔 特征位置/m 超压峰值/kPa 损伤持续时间/ms
    听觉器官 非听觉器官
    3.0 52.0 2.25 1.30
    4.0 27.9 3.25 0.80
    5.0 20.2 3.00 0
    3.0 44.9 2.20 1.25
    4.0 26.5 3.00 0.75
    5.0 19.7 3.20 0
    亚高 3.0 39.8 2.75 1.00
    4.0 23.1 2.50 0.50
    5.0 18.4 2.75 0
    3.0 33.7 2.50 0.90
    4.0 22.2 2.00 0.30
    5.0 17.0 2.75 0
    下载: 导出CSV

    表  2  炮口冲击波下听觉器官的损伤阈值[30]

    Table  2.   Safety limits of human auditory organ damage risk under muzzle blast[30]

    有效持续时间/ms安全限值/kPa
    1发3发10发50发100发300发500发
    1.612.308.846.163.803.092.221.91
    3.010.187.325.103.152.561.841.58
    下载: 导出CSV

    表  3  炮口冲击波下非听觉器官损伤阈值[31]

    Table  3.   Safety limit of human non-auditory organ damage risk under muzzle blast[31]

    有效持续时间/ms安全限值/kPa
    1发5发10发15发20发30发60发80发100发
    141.236.334.333.032.231.028.928.027.3
    239.134.332.231.031.028.926.825.925.3
    下载: 导出CSV
  • [1] 孙全兆, 范社卫, 王殿荣, 等. 某突击炮炮口流场数值模拟研究 [J]. 弹道学报, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.

    SUN Q Z, FAN S W, WANG D R, et al. Numerical study of muzzle flow field of assault gun [J]. Journal of Ballistics, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.
    [2] 郭则庆. 膛口流场动力学机理数值研究 [D]. 南京: 南京理工大学, 2012. DOI: 10.7666/d.Y2275207.

    GUO Z Q. Numerical investigations on the dynamics mechanism of muzzle flow [D]. Nanjing: Nanjing University of Science and Technology, 2012. DOI: 10.7666/d.Y2275207.
    [3] HUGONIOT M. On the diversified movement of a gas compressed in a reservoir which empties freely into the atmosphere [J]. Comptes Rendue, 1886, 1: 103.
    [4] CROWLEY A B, SZMELTER J. Computation of muzzle flow fields using unstructured meshes [C]// Proceedings of the 19th International Symposium of Ballistics. Interlaken: Launch Dynamic & Propulsion, 2001: 265–271.
    [5] 赖富文, 张志杰, 胡桂梅, 等. 某型舰炮炮口冲击波等压场测试方法 [J]. 传感技术学报, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014.

    LAI F W, ZHANG Z J, HU G M, et al. A method to measure muzzle shock wave pressure field for a naval gun [J]. Chinese Journal of Sensors and Actuators, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014.
    [6] 蒋晟, 阮文俊, 孙雪明, 等. 大口径火炮发射噪声场数值仿真与实验研究 [J]. 火炮发射与控制学报, 2024, 45(1): 113–118. DOI: 10.19323/j.issn.1673-6524.202303027.

    JIANG S, RUAN W J, SUN X M, et al. Numerical simulation and experimental study on noise field of large caliber gun [J]. Journal of Gun Launch & Control, 2024, 45(1): 113–118. DOI: 10.19323/j.issn.1673-6524.202303027.
    [7] 王加刚, 余永刚, 周良梁. 埋头弹火炮高效低危害炮口制退器的实验研究 [J]. 兵工学报, 2017, 38(5): 1035–1040. DOI: 10.3969/j.issn.1000-1093.2017.05.025.

    WANG J G, YU Y G, ZHOU L L. Experimental study of high efficiency and low hazard muzzle brake for CTA gun [J]. Acta Armamentarii, 2017, 38(5): 1035–1040. DOI: 10.3969/j.issn.1000-1093.2017.05.025.
    [8] 余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 065102. DOI: 10.11858/gywlxb.20200568.

    YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. DOI: 10.11858/gywlxb.20200568.
    [9] DILLON JR, R, NAGAMATSU H. A parametric study of perforated muzzle brakes [C]//Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando: American Institute of Aeronautics and Astronautics, 1993. DOI: 10.2514/6.1993-3090.
    [10] LUO Y, XU D, LI H. Analysis of the dynamic characteristics of the muzzle flow field and investigation of the influence of projectile nose shape [J]. Applied Sciences, 2020, 10(4): 1468. DOI: 10.3390/app10041468.
    [11] CARSON R A, SAHNI O. Numerical investigation of propellant leak methods in large-caliber cannons for blast overpressure attenuation [J]. Shock Waves, 2014, 24(6): 625–638. DOI: 10.1007/s00193-014-0522-7.
    [12] ZHANG X, YU Y G, ZHANG X W. Numerical simulation and analysis of the 3D transient muzzle flow field of underwater artillery [J]. Ocean Engineering, 2023, 284: 115270. DOI: 10.1016/j.oceaneng.2023.115270.
    [13] 张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析 [J]. 爆炸与冲击, 2021, 41(10): 103901. DOI: 10.11883/bzycj-2021-0056.

    ZHANG X, YU Y G, ZHANG X W. Analysis of muzzle flow field characteristics of gun fired in different media [J]. Explosion and Shock Waves, 2021, 41(10): 103901. DOI: 10.11883/bzycj-2021-0056.
    [14] 张京辉, 余永刚. 弹道枪不同水深下全淹没式发射膛口流场的数值分析 [J]. 爆炸与冲击, 2020, 40(10): 104201. DOI: 10.11883/bzycj-2019-0478.

    ZHANG J H, YU Y G. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths [J]. Explosion and Shock Waves, 2020, 40(10): 104201. DOI: 10.11883/bzycj-2019-0478.
    [15] LI P F, ZHANG X B. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion [J]. Defence Technology, 2021, 17(4): 1178–1189. DOI: 10.1016/j.dt.2020.06.019.
    [16] QIN Q Y, ZHANG X B. Numerical investigation on combustion in muzzle flows using an inert gas labeling method [J]. International Journal of Heat and Mass Transfer, 2016, 101: 91–103. DOI: 10.1016/j.ijheatmasstransfer.2016.05.009.
    [17] 李子杰, 王浩. 膛口初始流场对火药燃气射流的影响 [J]. 含能材料, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.

    LI Z J, WANG H. Effect of precursor flow field of muzzle on the combustion gas jet flow of gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.
    [18] 郭则庆, 王杨, 姜孝海, 等. 膛口初始流场对火药燃气流场影响的数值研究 [J]. 兵工学报, 2012, 33(6): 663–668. DOI: 10.3969/j.issn.1000-1093.2012.06.005.

    GUO Z Q, WANG Y, JIANG X H, et al. Numerical study on effects of precursor flow on muzzle propellant flow field [J]. Acta Armamentarii, 2012, 33(6): 663–668. DOI: 10.3969/j.issn.1000-1093.2012.06.005.
    [19] 杨丽, 徐笑阳. 基于CFD仿真的炮口制退器性能影响因素研究 [J]. 装备环境工程, 2024, 21(3): 1–10. DOI: 10.7643/issn.1672-9242.2024.03.001.

    YANG L, XU X Y. Influencing factors of muzzle brake performance based on CFD simulation [J]. Equipment Environmental Engineering, 2024, 21(3): 1–10. DOI: 10.7643/issn.1672-9242.2024.03.001.
    [20] 王丹宇, 南风强, 廖昕, 等. 考虑化学反应的大口径火炮炮口流场特性 [J]. 兵工学报, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.

    WANG D Y, NAN F Q, LIAO X, et al. Characteristics of muzzle flow field of large caliber gun considering chemical reaction [J]. Acta Armamentarii, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.
    [21] 李福龙, 孔德仁, 王良全, 等. 海拔高度对化爆冲击波压力分布规律影响分析 [J]. 兵器装备工程学报, 2024, 45(2): 158–165. DOI: 10.11809/bqzbgcxb2024.02.020.

    LI F L, KONG D R, WANG L Q, et al. Analysis of the effect of altitude on the pressure distribution pattern of chemical explosion shock wave [J]. Journal of Ordnance Equipment Engineering, 2024, 45(2): 158–165. DOI: 10.11809/bqzbgcxb2024.02.020.
    [22] 朱冠南, 王争论, 马佳佳, 等. 低压环境下膛口冲击波实验研究 [J]. 兵工学报, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009.

    ZHU G N, WANG Z L, MA J J, et al. Research on muzzle shock wave in low pressure environment [J]. Acta Armamentarii, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009.
    [23] 陈龙明, 李志斌, 陈荣, 等. 高原环境爆炸冲击波传播特性的实验研究 [J]. 爆炸与冲击, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.

    CHEN L M, LI Z B, CHEN R, et al. An experimental study on propagation characteristics of blast waves under plateau environment [J]. Explosion and Shock Waves, 2022, 42(5): 114–124. DOI: 10.11883/bzycj-2021-0279.
    [24] WANG L Q, KONG D R. Research on the distribution characteristics of explosive shock waves at different altitudes [J]. Defence Technology, 2023, 24: 340–348. DOI: 10.1016/j.dt.2022.03.002.
    [25] 孙艳馥, 王欣. 爆炸冲击波对人体损伤与防护分析 [J]. 火炸药学报, 2008, 31(4): 50–53. DOI: 10.14077/j.issn.1007-7812.2008.04.022.

    SUN Y F, WANG X. Analysis of human body injury due to blast wave and protection method [J]. Chinese Journal of Explosives & Propellants, 2008, 31(4): 50–53. DOI: 10.14077/j.issn.1007-7812.2008.04.022.
    [26] 杨志焕, 王正国, 唐承功, 等. 炮口冲击波的生物效应及其对人员内脏损伤的安全限值 [J]. 振动与冲击, 1994(4): 39–45.

    YANG Z H, WANG Z G, TANG C G, et al. Biological effect of muzzle shock wave and its safety limit for human viscera damage [J]. Journal of Vibration and Shock, 1994(4): 39–45.
    [27] YELVERTON J, RICHMOND D, FLETCHER E, et al. Bioeffects of simulated muzzle blasts [C]//Proceedings of the Eighth International Symposium on Military Application of Blast Simulation. Spiez, Switzerland, 1992.
    [28] 李晓炎, 宁心, 杨志焕, 等. 高原与平原冲击波物理参数和生物效应的比较研究 [J]. 中国危重病急救医学, 2005, 17(2): 102–104. DOI: 10.3760/j.issn:1003-0603.2005.02.012.

    LI X Y, NING X, YANG Z H, et al. Comparative study on physical parameters and biological effects of blast wave on plateau and on plain [J]. Chinese Critical Care Medicine, 2005, 17(2): 102–104. DOI: 10.3760/j.issn:1003-0603.2005.02.012.
    [29] 李森, 王海燕, 龙在云, 等. 特殊环境冲击伤研究现状与展望 [J]. 中华诊断学电子杂志, 2020, 8(2): 73–77. DOI: 10.3877/cma.j.issn.2095-655X.2020.02.001.

    LI S, WANG H Y, LONG Z Y, et al. Research status and prospects of blast injury in special environment [J]. Chinese Journal of Diagnostics (Electronic Edition), 2020, 8(2): 73–77. DOI: 10.3877/cma.j.issn.2095-655X.2020.02.001.
    [30] 国防科学技术工业委员会. XXXX脉冲噪声和冲击波对人员听觉器官损伤的安全限值: GJB XX-XX [S]. 1996.
    [31] 中央军委装备发展部. 炮口冲击波对人员非听觉器官损伤的安全限值: GJB 1158A–2021 [S]. 北京: 国家军用标准出版发行部, 2021.
    [32] JIANG X H, CHEN Z H, FAN B C, et al. Numerical simulation of blast flow fields induced by a high-speed projectile [J]. Shock Waves, 2008, 18(3): 205–212. DOI: 10.1007/s00193-008-0155-9.
    [33] LEI H X, ZHAO J L, WANG Z J. Numerical simulation and experiments on muzzle blast overpressure in large-caliber weapons [J]. Journal of Engineering Science and Technology Review, 2016, 9(5): 111–116. DOI: 10.25103/jestr.095.17.
    [34] ZHAO X Y, ZHOU K D, HE L, et al. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake [J]. Shock and Vibration, 2019, 2019: 5938034. DOI: 10.1155/2019/5938034.
    [35] 魏胜程, 钱林方, 徐亚栋, 等. 车载炮驾驶室表面炮口冲击波超压特性 [J]. 兵工学报, 2024, 45(11): 1–14. DOI: 10.12382/bgxb.2023.0687.

    WEI S C, QIAN L F, XU Y D, et al. Muzzle blast overpressure characteristics on the surface of vehicle-mounted howitzer’s crew compartment [J]. Acta Armamentarii, 2024, 45(11): 1–14. DOI: 10.12382/bgxb.2023.0687.
    [36] 栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究 [J]. 爆炸与冲击, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.

    LI Z J, YOU X C, LIU Z L, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves [J]. Explosion and Shock Waves, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.
    [37] DU Z B, LI Z J, WANG P, et al. Revealing the effect of skull deformation on intracranial pressure variation during the direct interaction between blast wave and surrogate head [J]. Annals of Biomedical Engineering, 2022, 50(9): 1038–1052. DOI: 10.1007/s10439-022-02982-5.
    [38] LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w.
    [39] YANG F Y, LI Z J, ZHUANG Z, et al. Evaluating the blast mitigation performance of hard/soft composite structures through field explosion experiment and numerical analysis [J]. Acta Mechanica Sinica, 2022, 38(1): 121238. DOI: 10.1007/s10409-021-09001-x.
    [40] YANG F Y, LI Z J, LIU Z L, et al. Shock loading mitigation performance and mechanism of the PE/wood/PU/foam structures [J]. International Journal of Impact Engineering, 2021, 155: 103904. DOI: 10.1016/J.IJIMPENG.2021.103904.
    [41] 刘念祖, 戴劲松, 王茂森, 等. 基于流固耦合的某摆膛炮膛管间隙研究 [J]. 弹道学报, 2019, 31(3): 62–65. DOI: 10.12115/j.issn.1004-499X(2019)03-012.

    LIU N Z, DAI J S, WANG M S, et al. Research on a pendulum gun-tube clearance based on fluid-structure coupling [J]. Journal of Ballistics, 2019, 31(3): 62–65. DOI: 10.12115/j.issn.1004-499X(2019)03-012.
    [42] 赵耀, 郑海文, 刘胜超, 等. 自行高炮自动机身管热特性研究 [J]. 兵器装备工程学报, 2022, 43(10): 114–119. DOI: 10.11809/bqzbgcxb2022.10.016.

    ZHAO Y, ZHENG H W, LIU S C, et al. Study on thermal characteristics of automatic mechanism tube of self-propelled anti-air gun [J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 114–119. DOI: 10.11809/bqzbgcxb2022.10.016.
    [43] 王鸿, 高俊宏, 岳红, 等. 某新型火炮冲击波的生物效应研究 [J]. 职业与健康, 2014, 30(11): 1466–1467,1470. DOI: 10.13329/j.cnki.zyyjk.2014.11.042.

    WANG H, GAO J H, YUE H, et al. Study on biological effects of the new-type gun blast waves [J]. Occupation and Health, 2014, 30(11): 1466–1467,1470. DOI: 10.13329/j.cnki.zyyjk.2014.11.042.
    [44] 杨志焕, 姚德胜, 王正国, 等. 炮口冲击波对炮手的影响 [J]. 第三军医大学学报, 1991, 13(4): 412–413. DOI: 10.16016/j.1000-5404.1991.04.046.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  35
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-10-15
  • 网络出版日期:  2024-10-16
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回