Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes
-
摘要: 基于耦合的欧拉-拉格朗日(coupled Eulerian-Lagrangian, CEL)法建立了“火药燃气-炮管/炮弹-空气”流固耦合模型,分别对低海拔(海拔高度0 m)、中海拔(海拔高度
1000 m)、亚高海拔(海拔高度3000 m)和高海拔(海拔高度5000 m)环境下大口径火炮的发射过程进行了数值模拟,研究了海拔高度对炮口冲击波动态演化过程的影响机制。模拟结果表明,大口径火炮炮口冲击波动态演化过程具有显著的方向依赖性,炮口冲击波峰值压力随海拔高度的增加而降低,峰值压力与环境压力近似呈线性关系;形成于炮口制退器处的侧向冲击波主导了操炮人员典型作业区域(炮口后方3~5 m)的冲击波超压峰值,在不同海拔条件下进行火炮射击都可致操炮人员听觉器官发生损伤,并对非听觉器官造成威胁。因此,亟需提高操炮人员个体装备防护性能,从而形成对眼、耳、肺和脑等重要器官的有效保护。Abstract: Based on the coupled Euler-Lagrangian (CEL) method, a fluid-solid coupling model of gunpowder gas-barrel/cannonball-air is established. Numerical simulations are carried out on the launching process of large-caliber artillery shells in low altitude (altitude 0 m), medium altitude (altitude1000 m), sub-high altitude (altitude3000 m) and high altitude (altitude5000 m) environments, and the comparative studies are conducted on the influence mechanism of altitudes on the dynamic evolution characteristics of muzzle shock waves. The simulation results show that the dynamic evolution process of the muzzle shock wave has significant direction dependence. The peak pressure of the muzzle shock wave will decrease as the altitude increases (namely the ambient pressure decreases), and the decrease of peak pressure is approximately linear to the change of ambient pressure . Increasing altitude will reduce the pressure peak of the muzzle shock wave for the same position (same distance and direction). The lateral muzzle shock wave, formed at the muzzle brake, dominates the pressure peak in the typical operating zone of the artillery operators (3–5 m behind the muzzle). The pressure peak value and effective action time at different altitudes can cause damage to the hearing organs, and induce the threat to the non-hearing organs. Therefore, the protection capabilities of artillery operators’ equipment is urgently needed to be improved, providing the effective protection for the important organs, such as ears, eyes, lungs and brains.-
Key words:
- muzzle shock wave /
- fluid-structure coupling model /
- altitude /
- personal protection
-
在不同厚度飞片相互撞击过程中,冲击波从材料自由表面反射,材料内部或近自由表面区域受到卸载稀疏波作用,如果延性金属材料内部的拉伸应力足够高,以孔洞形式的损伤将经历成核、增长和汇合演化过程,当微孔洞的数量和尺寸增长到一定阶段之后,它们的(强)相互作用就变得十分重要,这时,微孔洞之间的汇合以及细观尺度上的不稳定性将导致材料的最终破坏。实验结果分析表明:在强动态拉伸载荷作用下,孔洞汇合可能开始于孔洞成核后,并伴随损伤演化整个过程,此时,孔洞汇合对孔洞增长起到抑制作用[1];孔洞增长不仅以孤立孔洞形式增长,而且可能主要以孔洞汇合形式增长[2]。因此,在连续损伤模型中耦合孔洞汇合的影响,有助于精细描述延性材料损伤演化过程、分析不同因素对损伤演化过程的影响[3-5]。
由于微孔洞之间强相互作用在理论分析方面遇到的困难,至今还没有一个较好的模型对孔洞汇合进行合理的描述[6]。一个合理的孔洞汇合模型不仅应给出开始汇合的准则,而且还应该对其间的应力松弛或材料软化予以适当的描述。当然要作以上分析是非常困难的,因而许多学者通过数值模拟两个孔洞之间的相互关系给出一些半经验性的孔洞汇合临界条件,即以孔洞之间的相互距离或临界损伤作为孔洞汇合的临界判据:T.Pardoen等[7]认为孔洞汇合的临界损伤依赖于微孔洞初始体积分数、加载应力三轴度及微孔洞形状;M.F.Horstemeyer等[8]采用微力学有限元计算方法研究准静态加载条件下两个孔洞之间的贯通行为,指出孔洞开始汇合的临界韧带距离依赖于边界条件和材料韧性,且约为2~8倍的孔洞直径;E.T.Seppala等[9]采用分子动力学方法对动态条件下铜材料中孔洞的增长和聚集行为进行了数值模拟,结果显示临界韧带距离约为0.5倍孔洞直径时,孔洞周围塑性区相遇,孔洞增长速度突然增加,从而导致孔洞汇合。此外,在理论分析方面,P.F.Thomson[10]简化了塑性极限载荷的滑移线场解, 提出了一种孔洞汇合的判断准则;D.L.Tonks等[11]进一步用高应变率下的随机滤渗理论解释了断裂点, 提出了一种通过孔洞聚集形成小尺度孔洞簇增长的模型;T.Pardoen等[12]讨论了基于微结构机理的孔洞汇合模型的进展,并指出因微孔洞汇合引起金属断裂过程最后阶段的模拟需要反映微结构演化重要信息的延性损伤模型。在过去的十多年里,孔洞汇合研究的重要进步是基于简单的孔隙度准则或临界应变准则发展为基于微观机理认识的进展。不过,目前的研究主要是分析相同大小孔洞间的汇合,还需要将其扩展到更一般的情况,即不同大小的孔洞之间的汇合问题;此外,对于孔洞汇合最初发生于相同的大孔洞之间、小孔洞之间亦或不同大小孔洞之间,目前还没有确切的说明。同时,现有的孔洞汇合模型严格来说是描述孔洞变形对损伤的影响,且一般采用指数函数来唯像描述孔洞汇合后损伤的快速增长[13],而根据损伤度的定义,孔洞汇合时刻并没有引起损伤的改变,但实际却促进了损伤的快速发展,目前对于其物理机理至今仍处于探讨之中。
本文中基于两个不同大小孔洞之间的几何关联,给出孔洞汇合的临界判定方法,并基于能量守恒原理,揭示孔洞汇合后引起损伤增长的物理机理,同时,耦合孔洞汇合的影响,采用数值方法讨论孔洞汇合对延性金属层裂损伤演化特性的影响。
1. 孔洞汇合的判定方法
现阶段对于孔洞汇合机理的分析已经成为层裂损伤研究的主要关注点[14-16],不过,现有的汇合判据还存在不足之处:距离判据没有考虑损伤的影响;损伤(或应力、应变)判据没有考虑孔洞大小的影响。此外,在强动态加载情况下,孔洞增长过程不易发生塑性局域化,孔洞几乎仍然保持球形形状,孔洞汇合时,损伤度较高,且孔洞之间产生相互接触,这可能是因为惯性对孔洞间的颈缩起了阻碍作用[14],这种情况在一些层裂实验[17-18]以及裂纹扩展实验[19]中均可以观测到(见图 1)。因汇合前孔洞基本保持球形形状,且相邻孔洞间距较小,则因孔洞间基体材料颈缩引起孔洞变化对损伤的影响较小,因此相对于基于颈缩过程分析得到的孔洞汇合判据,采用孔洞间距离判据更加简单、适宜。
为此,我们考虑两个空心球壳之间的几何关联(见图 2),并定义孔隙度:
α=b3/(b3−a3) 则孔洞间距离可以表示为:
d=[(αα−1)1/3−1](a1+a2) (1) 本文中仍将采用孔洞间的距离作为孔洞开始汇合的判据,并根据实验结果确定临界孔洞距离dcr(根据文献[2]的实验结果,本文中采用dcr=4min(a1, a2)),即当两个孔洞间的距离d≤dcr时,认为相应的两个孔洞之间发生汇合。与现有的距离计算方法不同,公式(1)不仅包含了孔洞大小,同时也包含了损伤度的影响。众所周知,在相同加载条件下小孔洞周边的应力集中更明显,同时,在大孔洞不变的情况下,小孔洞越小,其对应的损伤度越小,因此,孔洞汇合应该首先发生于最大孔洞与最小孔洞之间,这也从侧面说明了实验最后的观测结果以及相关的数值模拟结果中小孔洞很少的可能原因。
取a1=ka2、d=ma1=mka2,则公式(1)可以转化为损伤度D的表达式:
D=α−1α=[1+k1+(m+1)k]3 (2) 两个特例:
当m=k=1时,D=0.296,这与分析层裂问题时常采用的临界断裂损伤度相近;
当m=1时,有D=α−1α=limk→∞[1+k1+2k]3=0.125。
这与L.M.Brown等[20]和D.L.Tonks等[11]分析的孔洞汇合初始临界损伤度完全一致,换句话说,文献[11, 20]中所采用的孔洞汇合临界损伤度只是我们所讨论的特例,图 3显示了孔洞汇合损伤度与汇合孔洞相对大小比值之间的对应关系,同时,计算结果也显示了孔洞汇合损伤度的取值范围在0.296~0.125之间。
当k=10时,图 4显示了孔洞汇合损伤度与孔洞距离之间的对应关系。综合分析图 3~4和公式(2)可知,孔洞汇合是损伤、孔洞相对大小以及孔洞间距离综合影响的结果。对于材料性质、应力状态对孔洞汇合的影响:一方面,损伤与应力、应变耦合在一起[21],损伤对孔洞汇合的影响也间接地反映了材料性质和应力状态对孔洞汇合的影响;另一方面,针对强加载情况,直至汇合前孔洞仍基本保持球形形状,因此,材料的性质和应力状态的影响主要反映在汇合前的孔洞增长过程。
2. 孔洞汇合对损伤增长的影响
现有的孔洞汇合判据(模型),包括距离判据或应力、应变判据(如Tonks模型和Thomason模型),都是基于孔洞间材料颈缩过程得到的,描述的是汇合前孔洞的变化情况,而没有涉及孔洞汇合后对损伤的影响。对于在强动态拉伸载荷作用下,因汇合前孔洞基本保持球形形状,且孔洞间距很小,则孔洞间材料颈缩过程对损伤的影响减弱。目前已经有大量的文献研究孔洞间材料颈缩过程对损伤的影响,因此本文中忽略颈缩的影响,主要讨论孔洞汇合后对损伤度增长的影响。
孔洞汇合遵循能量守恒原则,即在孔洞汇合前后有:
Ei+Ek=ˉEi+ˉEk (3) 式中:Ei、Ek分别表示孔洞周围基体材料的内能和动能,Ei、Ek为孔洞汇合后对应的值。
对于内能的变化,在绝热条件下有:
˙e=−p∂v∂t (4) 式中:e、p、v分别表示单位体积的内能、压力和材料的相对比容。因基体材料不可压假设,并且假设孔洞汇合并没有改变材料内部的孔隙度,因此有:
∂v∂t=0 即孔洞汇合时内能守恒。
此外,针对单一的空心球壳,设r0为基体材料内部的Lagrange坐标,相应的r为Euler坐标,a0、α0为初始孔洞半径和初始孔隙度,则根据不可压缩假设有[21]:
r3=r30−a30α0−αα0−1 (5) ˙r=a303r2(α0−1)˙α (6) 则其动能可以表示为:
Ek=12∫ba4πρr2˙r2dr=2πρ9a60(α0−1)2[1−(α−1α)1/3]˙α21a (7) 损伤材料内部含有大量不同大小的孔洞,不妨将其等效为不同大小的空心球壳,且每一个空心球壳的内外径之比相同,即α和α0相同,这样不仅方便损伤的计算,而且可以间接地考虑孔洞之间的相互作用[22-23]。因孔洞汇合前后α、α0和基体材料的密度ρ不变,则根据动能守恒原则,由公式(7)有:
˙ˉα=˙α√∑(ni/ai)∑(Nj/Rj) (8) 式中:˙α、ai以及ni为孔洞汇合前的孔隙度增长率、孔洞半径以及对应的孔洞数,˙ˉα、Rj以及Nj为孔洞汇合后的值。式(8)显示了因孔洞汇合引起的孔洞数减少、孔洞尺寸增加,从而造成孔隙度增长速度的提高,这也明确了因孔洞汇合引起损伤增长的物理机理。
3. 孔洞汇合影响的数值分析
对于延性金属层裂损伤的研究,我们已经建立了反映初始损伤及孔洞大小、惯性和材料弹塑性效应的层裂损伤物理统计描述方法[22],同时,基于材料晶粒尺寸与潜在孔洞成核数之间的关系,构建了一个耦合晶粒尺寸影响的孔洞成核方程[24]。在前期工作的基础上,我们将孔洞汇合的影响引入到已有的层裂损伤模型中,即在计算损伤演化过程中,根据公式(1),当孔洞间距离d≤dcr时,采用公式(8)调整孔隙度的增长率,同时结合相关文献对实验结果的分析[2],探讨孔洞汇合对层裂损伤演化过程的影响。层裂实验靶材料分别选用30、60、100和200 μm等4种晶粒尺寸的高纯铜,靶厚均为4 mm;飞片材料为石英(Z-cut quartz),厚度约2 mm,飞片速度约131 m/s。对4种靶材料的实验结果进行了数值模拟,同时,在30 μm晶粒尺寸高纯铜的计算模型中考虑了孔洞汇合的影响。计算中所采用的模型参数和材料参数均与我们前期的工作[22, 24]所采用的参数相同。
图 5显示了汇合对孔洞尺寸d增长的影响:因汇合以及汇合导致孔隙度增长率的提高,相对于没有考虑汇合的计算结果,孔洞尺寸迅速增长。图 6的计算结果显示:虽然孔洞汇合时损伤度没有增加,但因为汇合引起孔隙度增长率的提高,从而导致了损伤的快速增长。
图 7左图显示了晶粒尺寸、孔洞汇合对自由面速度vf的影响:随着材料平均晶粒尺寸的增加,自由面速度曲线的回跳点降低,即层裂强度增加,这与P.B.Trivedi等[25]对不同晶粒尺寸高纯铝层裂实验结果的分析在定性上一致;同时,对于平均晶粒尺寸为30 μm的材料,考虑孔洞汇合的影响,曲线回跳后的斜率显著增加,上升的幅度增高,图 7右图为对应的自由面速度曲线实验结果:平均晶粒尺寸dg=30、200 μm的损伤材料中存在大量的孔洞汇合现象,相对于没有发生孔洞汇合的自由面速度曲线(60、100 μm),自由面速度曲线回跳后的斜率和上升的幅度增加[2],关于孔洞汇合的计算结果和实验结果定性上符合也较好。
表 1列出了不同平均晶粒尺寸dg损伤材料内部层裂面处孔洞数N和平均孔洞直径dv的实验统计结果和数值计算结果(注:实验给出的是可观测到的孔洞数,而计算给出的是单位体积(cm3)内的孔洞数)。实验观测结果显示:随着晶粒尺寸的增加,损伤材料内部的孔洞数减少、平均孔洞尺寸增加。计算结果与实验定性符合。同时,对实验观测结果和计算结果的分析表明(30 μm样品):孔洞汇合引起孔洞数减少、平均孔洞尺寸增加。
表 1 损伤材料内部孔洞数及孔洞大小的统计结果Table 1. Damage statisticsdg /μm N dv 实验 计算 实验 计算 30 236 11.460 38.1 12.17 0.044(考虑汇合) 37.12(考虑汇合) 60 363 3.236 22.7 22.36 100 267 1.421 33.0 34.51 200 111 0.566 55.1 42.60 图 8显示了选取不同孔洞汇合临界损伤度D对自由面速度曲线的影响:孔洞汇合发生越早,材料内部损伤发展越快,即自由面曲线回跳后曲线上升的斜率和幅度越大。
4. 结语
耦合孔洞汇合的影响是精细化描述延性金属材料层裂损伤演化过程的关键。针对强动态拉伸载荷作用下延性金属层裂损伤问题,尝试建立了一个反映材料损伤和材料内部孔洞之间几何信息的孔洞汇合判定方法,从而弥补了现有判据只考虑单一影响因素的不足。同时,基于孔洞汇合前后能量守恒原理,给出了孔洞汇合对损伤增长影响的关系式,明确了孔洞汇合引起损伤增长的物理机理。
将材料平均晶粒尺寸影响和孔洞汇合影响引入到层裂损伤模型中,结合相关文献的实验分析结果,数值计算分析结果显示:晶粒尺寸越小,损伤材料内部成核孔洞越多、平均孔洞尺寸越小,自由面速度回跳点增高(即层裂强度降低)、回跳后速度曲线上升的斜率降低;孔洞汇合引起回跳后速度曲线上升的斜率增加、损伤材料内部的孔洞数减少、平均孔洞尺寸增加。计算结果与实验结果定性上符合较好,从而在一定程度上推进了延性金属层裂损伤的微细观物理建模研究。
-
表 1 不同海波高度下操炮人员典型作业区域特征位置处的超压峰值和器官损伤持续时间
Table 1. Peak overpressure of characteristic positions in the typical operating zone of artillery operators at different altitudes and the corresponding duration time of organ damage
海拔 特征位置/m 超压峰值/kPa 损伤持续时间/ms 听觉器官 非听觉器官 低 3.0 52.0 2.25 1.30 4.0 27.9 3.25 0.80 5.0 20.2 3.00 0 中 3.0 44.9 2.20 1.25 4.0 26.5 3.00 0.75 5.0 19.7 3.20 0 亚高 3.0 39.8 2.75 1.00 4.0 23.1 2.50 0.50 5.0 18.4 2.75 0 高 3.0 33.7 2.50 0.90 4.0 22.2 2.00 0.30 5.0 17.0 2.75 0 -
[1] 孙全兆, 范社卫, 王殿荣, 等. 某突击炮炮口流场数值模拟研究 [J]. 弹道学报, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.SUN Q Z, FAN S W, WANG D R, et al. Numerical study of muzzle flow field of assault gun [J]. Journal of Ballistics, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011. [2] 郭则庆. 膛口流场动力学机理数值研究 [D]. 南京: 南京理工大学, 2012. DOI: 10.7666/d.Y2275207.GUO Z Q. Numerical investigations on the dynamics mechanism of muzzle flow [D]. Nanjing: Nanjing University of Science and Technology, 2012. DOI: 10.7666/d.Y2275207. [3] HUGONIOT M. On the diversified movement of a gas compressed in a reservoir which empties freely into the atmosphere [J]. Comptes Rendue, 1886, 1: 103. [4] CROWLEY A B, SZMELTER J. Computation of muzzle flow fields using unstructured meshes [C]// Proceedings of the 19th International Symposium of Ballistics. Interlaken: Launch Dynamic & Propulsion, 2001: 265–271. [5] 赖富文, 张志杰, 胡桂梅, 等. 某型舰炮炮口冲击波等压场测试方法 [J]. 传感技术学报, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014.LAI F W, ZHANG Z J, HU G M, et al. A method to measure muzzle shock wave pressure field for a naval gun [J]. Chinese Journal of Sensors and Actuators, 2015, 28(1): 77–80. DOI: 10.3969/j.issn.1004-1699.2015.01.014. [6] 蒋晟, 阮文俊, 孙雪明, 等. 大口径火炮发射噪声场数值仿真与实验研究 [J]. 火炮发射与控制学报, 2024, 45(1): 113–118. DOI: 10.19323/j.issn.1673-6524.202303027.JIANG S, RUAN W J, SUN X M, et al. Numerical simulation and experimental study on noise field of large caliber gun [J]. Journal of Gun Launch & Control, 2024, 45(1): 113–118. DOI: 10.19323/j.issn.1673-6524.202303027. [7] 王加刚, 余永刚, 周良梁. 埋头弹火炮高效低危害炮口制退器的实验研究 [J]. 兵工学报, 2017, 38(5): 1035–1040. DOI: 10.3969/j.issn.1000-1093.2017.05.025.WANG J G, YU Y G, ZHOU L L. Experimental study of high efficiency and low hazard muzzle brake for CTA gun [J]. Acta Armamentarii, 2017, 38(5): 1035–1040. DOI: 10.3969/j.issn.1000-1093.2017.05.025. [8] 余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 065102. DOI: 10.11858/gywlxb.20200568.YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. DOI: 10.11858/gywlxb.20200568. [9] DILLON JR, R, NAGAMATSU H. A parametric study of perforated muzzle brakes [C]//Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando: American Institute of Aeronautics and Astronautics, 1993. DOI: 10.2514/6.1993-3090. [10] LUO Y, XU D, LI H. Analysis of the dynamic characteristics of the muzzle flow field and investigation of the influence of projectile nose shape [J]. Applied Sciences, 2020, 10(4): 1468. DOI: 10.3390/app10041468. [11] CARSON R A, SAHNI O. Numerical investigation of propellant leak methods in large-caliber cannons for blast overpressure attenuation [J]. Shock Waves, 2014, 24(6): 625–638. DOI: 10.1007/s00193-014-0522-7. [12] ZHANG X, YU Y G, ZHANG X W. Numerical simulation and analysis of the 3D transient muzzle flow field of underwater artillery [J]. Ocean Engineering, 2023, 284: 115270. DOI: 10.1016/j.oceaneng.2023.115270. [13] 张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析 [J]. 爆炸与冲击, 2021, 41(10): 103901. DOI: 10.11883/bzycj-2021-0056.ZHANG X, YU Y G, ZHANG X W. Analysis of muzzle flow field characteristics of gun fired in different media [J]. Explosion and Shock Waves, 2021, 41(10): 103901. DOI: 10.11883/bzycj-2021-0056. [14] 张京辉, 余永刚. 弹道枪不同水深下全淹没式发射膛口流场的数值分析 [J]. 爆炸与冲击, 2020, 40(10): 104201. DOI: 10.11883/bzycj-2019-0478.ZHANG J H, YU Y G. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths [J]. Explosion and Shock Waves, 2020, 40(10): 104201. DOI: 10.11883/bzycj-2019-0478. [15] LI P F, ZHANG X B. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion [J]. Defence Technology, 2021, 17(4): 1178–1189. DOI: 10.1016/j.dt.2020.06.019. [16] QIN Q Y, ZHANG X B. Numerical investigation on combustion in muzzle flows using an inert gas labeling method [J]. International Journal of Heat and Mass Transfer, 2016, 101: 91–103. DOI: 10.1016/j.ijheatmasstransfer.2016.05.009. [17] 李子杰, 王浩. 膛口初始流场对火药燃气射流的影响 [J]. 含能材料, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.LI Z J, WANG H. Effect of precursor flow field of muzzle on the combustion gas jet flow of gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003. [18] 郭则庆, 王杨, 姜孝海, 等. 膛口初始流场对火药燃气流场影响的数值研究 [J]. 兵工学报, 2012, 33(6): 663–668. DOI: 10.3969/j.issn.1000-1093.2012.06.005.GUO Z Q, WANG Y, JIANG X H, et al. Numerical study on effects of precursor flow on muzzle propellant flow field [J]. Acta Armamentarii, 2012, 33(6): 663–668. DOI: 10.3969/j.issn.1000-1093.2012.06.005. [19] 杨丽, 徐笑阳. 基于CFD仿真的炮口制退器性能影响因素研究 [J]. 装备环境工程, 2024, 21(3): 1–10. DOI: 10.7643/issn.1672-9242.2024.03.001.YANG L, XU X Y. Influencing factors of muzzle brake performance based on CFD simulation [J]. Equipment Environmental Engineering, 2024, 21(3): 1–10. DOI: 10.7643/issn.1672-9242.2024.03.001. [20] 王丹宇, 南风强, 廖昕, 等. 考虑化学反应的大口径火炮炮口流场特性 [J]. 兵工学报, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.WANG D Y, NAN F Q, LIAO X, et al. Characteristics of muzzle flow field of large caliber gun considering chemical reaction [J]. Acta Armamentarii, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006. [21] 李福龙, 孔德仁, 王良全, 等. 海拔高度对化爆冲击波压力分布规律影响分析 [J]. 兵器装备工程学报, 2024, 45(2): 158–165. DOI: 10.11809/bqzbgcxb2024.02.020.LI F L, KONG D R, WANG L Q, et al. Analysis of the effect of altitude on the pressure distribution pattern of chemical explosion shock wave [J]. Journal of Ordnance Equipment Engineering, 2024, 45(2): 158–165. DOI: 10.11809/bqzbgcxb2024.02.020. [22] 朱冠南, 王争论, 马佳佳, 等. 低压环境下膛口冲击波实验研究 [J]. 兵工学报, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009.ZHU G N, WANG Z L, MA J J, et al. Research on muzzle shock wave in low pressure environment [J]. Acta Armamentarii, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009. [23] 陈龙明, 李志斌, 陈荣, 等. 高原环境爆炸冲击波传播特性的实验研究 [J]. 爆炸与冲击, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.CHEN L M, LI Z B, CHEN R, et al. An experimental study on propagation characteristics of blast waves under plateau environment [J]. Explosion and Shock Waves, 2022, 42(5): 114–124. DOI: 10.11883/bzycj-2021-0279. [24] WANG L Q, KONG D R. Research on the distribution characteristics of explosive shock waves at different altitudes [J]. Defence Technology, 2023, 24: 340–348. DOI: 10.1016/j.dt.2022.03.002. [25] 孙艳馥, 王欣. 爆炸冲击波对人体损伤与防护分析 [J]. 火炸药学报, 2008, 31(4): 50–53. DOI: 10.14077/j.issn.1007-7812.2008.04.022.SUN Y F, WANG X. Analysis of human body injury due to blast wave and protection method [J]. Chinese Journal of Explosives & Propellants, 2008, 31(4): 50–53. DOI: 10.14077/j.issn.1007-7812.2008.04.022. [26] 杨志焕, 王正国, 唐承功, 等. 炮口冲击波的生物效应及其对人员内脏损伤的安全限值 [J]. 振动与冲击, 1994(4): 39–45.YANG Z H, WANG Z G, TANG C G, et al. Biological effect of muzzle shock wave and its safety limit for human viscera damage [J]. Journal of Vibration and Shock, 1994(4): 39–45. [27] YELVERTON J, RICHMOND D, FLETCHER E, et al. Bioeffects of simulated muzzle blasts [C]//Proceedings of the Eighth International Symposium on Military Application of Blast Simulation. Spiez, Switzerland, 1992. [28] 李晓炎, 宁心, 杨志焕, 等. 高原与平原冲击波物理参数和生物效应的比较研究 [J]. 中国危重病急救医学, 2005, 17(2): 102–104. DOI: 10.3760/j.issn:1003-0603.2005.02.012.LI X Y, NING X, YANG Z H, et al. Comparative study on physical parameters and biological effects of blast wave on plateau and on plain [J]. Chinese Critical Care Medicine, 2005, 17(2): 102–104. DOI: 10.3760/j.issn:1003-0603.2005.02.012. [29] 李森, 王海燕, 龙在云, 等. 特殊环境冲击伤研究现状与展望 [J]. 中华诊断学电子杂志, 2020, 8(2): 73–77. DOI: 10.3877/cma.j.issn.2095-655X.2020.02.001.LI S, WANG H Y, LONG Z Y, et al. Research status and prospects of blast injury in special environment [J]. Chinese Journal of Diagnostics (Electronic Edition), 2020, 8(2): 73–77. DOI: 10.3877/cma.j.issn.2095-655X.2020.02.001. [30] 国防科学技术工业委员会. XXXX脉冲噪声和冲击波对人员听觉器官损伤的安全限值: GJB XX-XX [S]. 1996. [31] 中央军委装备发展部. 炮口冲击波对人员非听觉器官损伤的安全限值: GJB 1158A–2021 [S]. 北京: 国家军用标准出版发行部, 2021. [32] JIANG X H, CHEN Z H, FAN B C, et al. Numerical simulation of blast flow fields induced by a high-speed projectile [J]. Shock Waves, 2008, 18(3): 205–212. DOI: 10.1007/s00193-008-0155-9. [33] LEI H X, ZHAO J L, WANG Z J. Numerical simulation and experiments on muzzle blast overpressure in large-caliber weapons [J]. Journal of Engineering Science and Technology Review, 2016, 9(5): 111–116. DOI: 10.25103/jestr.095.17. [34] ZHAO X Y, ZHOU K D, HE L, et al. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake [J]. Shock and Vibration, 2019, 2019: 5938034. DOI: 10.1155/2019/5938034. [35] 魏胜程, 钱林方, 徐亚栋, 等. 车载炮驾驶室表面炮口冲击波超压特性 [J]. 兵工学报, 2024, 45(11): 1–14. DOI: 10.12382/bgxb.2023.0687.WEI S C, QIAN L F, XU Y D, et al. Muzzle blast overpressure characteristics on the surface of vehicle-mounted howitzer’s crew compartment [J]. Acta Armamentarii, 2024, 45(11): 1–14. DOI: 10.12382/bgxb.2023.0687. [36] 栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究 [J]. 爆炸与冲击, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.LI Z J, YOU X C, LIU Z L, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves [J]. Explosion and Shock Waves, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348. [37] DU Z B, LI Z J, WANG P, et al. Revealing the effect of skull deformation on intracranial pressure variation during the direct interaction between blast wave and surrogate head [J]. Annals of Biomedical Engineering, 2022, 50(9): 1038–1052. DOI: 10.1007/s10439-022-02982-5. [38] LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w. [39] YANG F Y, LI Z J, ZHUANG Z, et al. Evaluating the blast mitigation performance of hard/soft composite structures through field explosion experiment and numerical analysis [J]. Acta Mechanica Sinica, 2022, 38(1): 121238. DOI: 10.1007/s10409-021-09001-x. [40] YANG F Y, LI Z J, LIU Z L, et al. Shock loading mitigation performance and mechanism of the PE/wood/PU/foam structures [J]. International Journal of Impact Engineering, 2021, 155: 103904. DOI: 10.1016/J.IJIMPENG.2021.103904. [41] 刘念祖, 戴劲松, 王茂森, 等. 基于流固耦合的某摆膛炮膛管间隙研究 [J]. 弹道学报, 2019, 31(3): 62–65. DOI: 10.12115/j.issn.1004-499X(2019)03-012.LIU N Z, DAI J S, WANG M S, et al. Research on a pendulum gun-tube clearance based on fluid-structure coupling [J]. Journal of Ballistics, 2019, 31(3): 62–65. DOI: 10.12115/j.issn.1004-499X(2019)03-012. [42] 赵耀, 郑海文, 刘胜超, 等. 自行高炮自动机身管热特性研究 [J]. 兵器装备工程学报, 2022, 43(10): 114–119. DOI: 10.11809/bqzbgcxb2022.10.016.ZHAO Y, ZHENG H W, LIU S C, et al. Study on thermal characteristics of automatic mechanism tube of self-propelled anti-air gun [J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 114–119. DOI: 10.11809/bqzbgcxb2022.10.016. [43] 王鸿, 高俊宏, 岳红, 等. 某新型火炮冲击波的生物效应研究 [J]. 职业与健康, 2014, 30(11): 1466–1467,1470. DOI: 10.13329/j.cnki.zyyjk.2014.11.042.WANG H, GAO J H, YUE H, et al. Study on biological effects of the new-type gun blast waves [J]. Occupation and Health, 2014, 30(11): 1466–1467,1470. DOI: 10.13329/j.cnki.zyyjk.2014.11.042. [44] 杨志焕, 姚德胜, 王正国, 等. 炮口冲击波对炮手的影响 [J]. 第三军医大学学报, 1991, 13(4): 412–413. DOI: 10.16016/j.1000-5404.1991.04.046. 期刊类型引用(1)
1. 张凤国,刘军,何安民,赵福祺,王裴. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用. 物理学报. 2022(24): 284-292 . 百度学术
其他类型引用(1)
-