Response of CL-20-based high-detonation-velocity pressed explosive to drop-hammer impact
-
摘要: 针对典型CL-20基高爆速压装炸药(C-1, 94.5% CL-20+5.5%助剂)的发射安全性问题,开展了400 kg大型落锤试验对压装炸药C-1的冲击响应特性进行研究。同时,采用改进的应力率表征法及下限值法、特性落高法分别对该炸药的落锤冲击响应特性进行表征,并与同类压装炸药JO-8和JH-2进行了对比。得到了不同落高下3种压装炸药底部实测应力曲线及表征参数,并讨论了3种炸药撞击感度的差异及C-1炸药撞击感度的影响因素。结果表明,改进的应力率表征法对炸药撞击感度的表征具有一定的有效性和普适性,与其他方法对撞击感度规律的反映具有一致性。C-1炸药的特性落高(H50)为1 m,分别为JO-8和JH-2炸药特性落高的62.50%和50.00%;C-1炸药不发生爆轰对应的后坐应力峰值(σ0)为748.90 MPa,分别为JO-8和JH-2的85.42%和64.33%;C-1的安全应力率参数(C0)为344 GPa2/s,分别为JO-8和JH-2的45.87%和39.14%。CL-20的分子结构、C-1药柱的力学性能和热-化特性是造成其撞击感度高于JO-8和JH-2撞击感度的主要因素。Abstract: For the launch safety problem of the typical CL-20-based high detonation velocity pressed explosive (C-1, 94.5% CL-20+5.5% additive), the impact response characteristics of the explosive were studied by a large-scale hammer test with 400 kg, which has an impact loading curve similar to the loading characteristics of artillery chamber pressure. Meanwhile, the improved stress rate characterization method, the lower limit method, and the drop height method were used to characterize the drop hammer impact response characteristics of the explosive, and compared with the same kind of pressed explosives JO-8 and JH-2. The improved stress rate characterization method is obtained by improving the data processing process based on existing criteria and weakening the sensitivity of the original criterion formula to oscillatory waveforms. The measured stress curves and characterization parameters of the bottom of the three pressed explosives under different drop heights are obtained by tests, and the impact sensitivity differences of the explosives and influence factors of the impact sensitivity of C-1 are discussed. The results show that the improved stress rate characterization method has certain effectiveness and universality for characterizing the impact sensitivity of explosives. Meanwhile, the improved stress rate characterization method is consistent with other methods in reflecting the law. The drop height of C-1 (H50) is 1.0 m, which is 62.50% and 50.00% of JO-8 and JH-2, respectively; the peak stress of the backseat corresponding to non-detonation (σ0) is 748.90 MPa, which is 85.42% and 64.33% of JO-8 and JH-2, respectively; the safety stress rate parameter (C0) is 344 GPa2/s, which is 45.87% and 39.14% of JO-8 and JH-2, respectively. The molecular structure of CL-20, the mechanical properties, and the thermal-chemical characteristics of the C-1 explosive cylinder are the main factors that make its impact sensitivity higher than JO-8 and JH-2. The research results can provide a reference for the application and design calculation of CL-20-based high detonation velocity pressed explosives in a high overload environment.
-
炸药的力学性能参数与其反应机理和化爆安全性紧密相关[1-4]。单质高能炸药由于受到炸药大单晶生长困难的影响,不能直接加工成药柱等构件。目前,炸药力学性能均基于非均质炸药(PBX)为研究对象。研究表明,单质炸药的晶体特性对PBX的性能如感度、安定性、机械强度等有重要影响[5-12]。
HMX是目前综合性能最好的高能炸药,在武器中应用广泛。HMX 晶体因具有较多晶型以及复杂的相变问题而受到广泛的关注,它具有β、δ、α和γ等4种晶型, 其中β-HMX、δ-HMX和α-HMX 是固体,γ-HMX是液体[13-15]。 这几种晶型具有不同的稳定性和对外界刺激的敏感程度, 不同相之间可以发生相互转变。在常温常压下, 4种晶型的稳定性由强到弱依次为为β、γ、α、δ[14]。 β-HMX 是在室温下最稳定的晶型[15]。人们已开始研究HMX在动态加载条件下的非弹性行为[16]。 Menikoff等[17]和 Dick等[18]的实验研究结果表明,β-HMX单晶受平面冲击加载后呈现各向异性的弹塑性波结构。 Dick等[18]的认为对于这种脆性的分子晶体,其主要作用机制是塑性机制。Jaramillo等[19]通过分子动力学计算发现,β-HMX 的弹塑性转变机制是位错滑移运动。Sewell等[20]和Zaug等[21]也对β-HMX单晶的弹塑性行为开展了冲击加载实验研究。
冲击加载下炸药单晶温升剧烈,由于其动力学响应特性的高感度,很难获得较高压力下的实验结果。利用斜波加载实验技术[22],样品压缩过程中获得高压状态的同时依然可以保持样品材料中较低的温升,炸药不易发生化学反应。本研究利用磁驱动加载实验技术,开展了斜波加载下β-HMX两个晶向在15 GPa内的动力学响应研究,目的在于通过双光源外差测速技术(dual laser heterodyne velocimetry, DLHV)测量单晶的速度响应曲线,获得β-HMX单晶不同晶向弹塑性转变信息的同时获得炸药的压力-相对比容关系。
1. HMX单晶炸药的斜波压缩实验
HMX是一种具有各向异性力学性能的单斜晶体,本文中采用的厘米量级大块体样品由中北大学制备,样品如图1所示。
HMX晶体斜波压缩实验条件见表1,HMX单晶样品有(011)、(010)两个晶向,实验窗口为LiF单晶,加载电极为高导纯铝材料。单发实验对不同厚度样品进行斜波压缩,利用DLHV测试HMX样品/LiF窗口的界面速度。
表 1 实验条件Table 1. Experimental condition实验编号 晶向 样品厚度/mm 1 (011) 1.398 0.984 2 (010) 1.262 0.975 3 (010) 1.253 0.961 4 (010) 0.775 0.913 5 (010) 0.593 0.664 0.781 6 (011) 0.510 0.663 0.782 本文进行了2轮实验:第1轮实验完成了1发HMX(011)晶向实验和3发HMX(010)晶向实验;第2轮实验降低了加载压力,2种晶向各完成了1发实验。第1轮实验获得的速度历史曲线见图2~5,4发实验都是两组不同厚度的HMX晶体上下对称布局。第2轮实验获得的速度历史曲线见图6~7。由实验结果得,速度波剖面都是弹塑性双波结构,且在弹塑性转变区出现了明显的速度松弛现象,有十几米每秒的速度降低。实验2和实验3实验结果显示,在厚样品的塑性后形成了冲击波。实验3中厚样品的速度峰值比薄样品的高,这可能是由于冲击波引起样品中有部分化学反应发生。为了避免样品中形成冲击波,减小HMX晶体样品厚度,实验4~6中样品中都没有形成冲击波。
基于考虑阻抗失配修正的迭代Lagrange数据处理方法,完成了实验1和实验3两发实验的数据分析,获得了(011)和(010)两个晶向HMX晶体的压力-相对比容和声速-粒子速度曲线。(011)和(010)晶向HMX基于Hugoniot关系拟合的声速-粒子速度关系分别为us=2.728+2.234up和us=2.756+2.249 up。由于(011)和(010)两个晶向的p-V/V0关系参数基本一致,图中只给出(011)晶向的结果。静压实验结果[23-24]、LASL冲击实验数据[25]、准等熵加载实验结果[26]、苏锐等[27]采用分子动力学的计算结果和本文中结果见图8,本文工作结果与Yoo等[23]的静高压实验、文献[25]、Daniel等[26]的准等熵实验以及文献[27]中的计算结果基本吻合,说明15 GPa压力范围内未反应HMX晶体的等温线、准等熵和冲击Hugoniot线在压力-相对比容热力学平面未完全分离。
斜波加载实验对应样品一个连续的压缩过程,每发实验结果进行处理可获得压力峰值内连续变化的声速曲线,(011)和(010)晶向HMX晶体的拉氏声速曲线见图9。由实验1获得了(011)晶向HMX塑性段的拉氏声速-粒子速度曲线(图9(a)),线性拟合得到线性关系为cL=2.728+2×2.234up。由实验6获得了(011)晶向HMX塑性段线性关系为cL=2.765+2×2.226up。由实验4获得了(010)晶向HMX弹性段和塑性段的拉氏声速-粒子速度曲线(图9(b)),线性拟合得到弹性段线性关系为cL=3.022+15.867up,塑性段线性关系为cL=2.756+2×2.249up。由实验2获得了(010)晶向HMX塑性段线性关系为cL=2.713+2×2.255up。由实验3获得了(010)晶向HMX塑性段线性关系为cL=2.713+2×2.255up。由实验4获得了(010)晶向HMX塑性段线性关系为cL=2.741+2×2.242up。文献[28]对本文中的实验技术和数据处理不确定度进行了研究,实验得到的拉氏声速不确定度为1.5%。
由界面连续性条件可得,HMX样品与LiF窗口界面处的粒子速度和应力相等,可用弹塑性转变点处已知物性材料LiF窗口的应力代替HMX单晶的应力弹性极限σIEL。表2所示为本文中实验HMX晶体的弹塑性转变特征速度、样品厚度和计算的弹性极限。计算时,LiF单晶物性参数取密度ρ0=2.638 g/cm3,声速c0=5.15 km/s,声速对粒子速度的一阶系数 s=1.35。
表 2 HMX晶体的屈服Table 2. Yield of HMX crystalsHMX晶向 厚度/mm 屈服速度/(m·s−1) 弹性极限 /GPa (011) 1.398 67.05 0.927 0.510 77.63 1.076 (010) 0.975 69.80 0.966 1.262 70.30 0.973 0.961 63.90 1.263 1.253 71.50 0.990 0.775 63.90 0.883 0.913 67.10 0.928 0.664 69.78 0.966 0.781 59.69 0.824 图10为动态加载下HMX晶体弹性极限与厚度的关系,其中Baeri等[29]的斜波加载实验数据和Dick等[18]的冲击加载实验结果作为参考。三方实验数据总体趋势相同:(010)晶向的屈服极限高于(011)晶向的屈服极限;随着样品厚度的增加,HMX晶体弹性极限出现变化。
2. 数值模拟
实验速度波剖面在弹-塑性转变过程中有明显的速度弛豫现象,这是由于有机大分子单晶材料的黏性造成的。为了更好地描述HMX晶体的斜波压缩物理过程,本文中采用Hobenemser-Prager本构关系和弹-黏塑性模型[30],高压物态方程采用适用于等熵热力学过程的三阶Birch-Murnaghan模型[31]。Hobenemser-Prager黏弹塑性本构关系的具体形式为:
˙eij={12G˙Sij+1−k√J22ηSij√J2>k12G˙Sij √J2≤k (1) 式中:G为弹性剪切模量,
˙eij 为偏应变率,η 为材料黏性系数,Sij 为应力偏量,J2 为应力偏量第二不变量,k为剪切屈服值。三阶Birch-Murnaghan物态方程的具体形式为:
p(V)=32KT0[(V0V)7/3−(V0V)5/3]{1+34(K′T0−4)[(V0V)2/3−1]} (2) 式中:V为比容,V0为初始比容,
KT0 为等温体模量,K′T0 为等温体模量对压力的一阶系数。基于以上物理模型及表3的模型参数(其中KT0和参考文献[32]并利用本文实验数据对其修正),对HMX晶体的斜波加载实验过程进行了数值模拟,计算和实验结果如图11~12所示。这里以Al/LiF窗口界面粒子速度计算的电极内表面压力历史为输入边界。由图11~12可得,计算结果与实验结果整体上吻合较好,尤其在弹塑性转变部分,计算结果能较好再现弹塑性区域的速度弛豫现象,说明本文中选择的物理模型及参数适用于HMX晶体斜波压缩动力学过程的描述。
表 3 模拟计算所用的模型参数Table 3. Model parameters used in simulation晶向 σy /GPa G/GPa η/(Pa·s) KT0/GPa K′T0 (010) 0.55 7 110 9.75 15.0 (011) 0.60 11 90 13.00 10.5 3. 结 论
利用磁驱动加载装置CQ-4和激光干涉测速技术,开展了15 GPa压力内两种晶向HMX晶体的斜波加载实验,获得了包含弹塑性转变信息的速度波剖面。实验结果显示,HMX晶体两个晶向的动力学参数存在差异,通过数据处理获得了两个晶向HMX晶体的压力-相对比容曲线和声速-粒子速度曲线。结合Hobenemser-Prager弹-黏塑性本构关系和三阶Birch-Murnaghan物态方程对实验过程开展了数值模拟,计算结果可以较好再现HMX晶体斜波压缩下弹塑性转变对应的速度弛豫过程。
感谢吴刚、邓顺益、税荣杰和胥超等在实验运行和测试方面的帮助。
-
表 1 不同落高落锤试验结果
Table 1. Results of drop-hammer tests at different heights
落高/m 爆轰概率/% 落高/m 爆轰概率/% 0.8 0 1.1 100 0.9 0 1.2 100 1.0 50 1.5 100 表 2 C-1炸药冲击响应特性表征
Table 2. Impact response characterization of explosive C-1
特性落高法 下限值法 应力率表征法 H50/m σ50/MPa H0/m σ0/MPa C0/(GPa2·s−1) 1.0 776.79 0.9 748.90 344 -
[1] 彭翠枝, 赵春柳, 毛长勇, 等. 国外CL-20炸药技术发展分析 [J]. 火炸药学报, 2022, 45(3): 290–299. DOI: 10.14077/j.issn.1007-7812.202203003.PENG C Z, ZHAO C L, MAO C Y, et al. Foreign development status of CL-20 explosive technology [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 290–299. DOI: 10.14077/j.issn.1007-7812.202203003. [2] PARAKHIN V V, SMIRNOV G A. Research progress on design, synthesis and performance of energetic polynitro hexaazaisowurtzitane derivatives: towards improved CL-20 analogues [J]. FirePhysChem, 2024, 4(1): 21–33. DOI: 10.1016/j.fpc.2023.05.006. [3] BARI R, DENTON A A, FONDREN Z T, et al. Acceleration of decomposition of CL-20 explosive under nanoconfinement [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(6): 2649–2655. DOI: 10.1007/s10973-019-09027-5. [4] YANG L F, SHI X R, LI C Z, et al. Microfluidic assisted 90% loading CL-20 spherical particles: enhancing self-sustaining combustion performance [J]. Defence Technology, 2023, 22: 176–184. DOI: 10.1016/j.dt.2021.12.004. [5] 吴成成, 王正宏, 李世伟, 等. CL-20基压装炸药结构成型载体的设计及其应用 [J]. 火炸药学报, 2022, 45(3): 388–395. DOI: 10.14077/j.issn.1007-7812.202204020.WU C C, WANG Z H, LI S W, et al. Design and application of CL-20-based pressed explosives structure forming carrier [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 388–395. DOI: 10.14077/j.issn.1007-7812.202204020. [6] 刘正, 聂建新, 徐星, 等. 密闭空间内六硝基六氮杂异伍兹烷基复合炸药能量释放特性 [J]. 兵工学报, 2022, 43(3): 503–512. DOI: 10.12382/bgxb.2021.0163.LIU Z, NIE J X, XU X, et al. Energy release characteristics of CL-20-based composite explosives in confined space [J]. Acta Armamentarii, 2022, 43(3): 503–512. DOI: 10.12382/bgxb.2021.0163. [7] GAO H X, ZHANG Q H, SHREEVE J M. Fused heterocycle-based energetic materials (2012—2019) [J]. Journal of Materials Chemistry A, 2020, 8(8): 4193–4216. DOI: 10.1039/c9ta12704f. [8] LI C Y, KONG S, LIAO D J, et al. Fabrication and characterization of mussel-inspired layer-by-layer assembled CL-20-based energetic films via micro-jet printing [J]. Defence Technology, 2022, 18(10): 1748–1759. DOI: 10.1016/j.dt.2021.12.001. [9] 阚润哲, 聂建新, 郭学永, 等. 不同铝氧比CL-20基含铝炸药深水爆炸能量输出特性 [J]. 兵工学报, 2022, 43(5): 1023–1031. DOI: 10.12382/bgxb.2021.0227.KAN R Z, NIE J X, GUO X Y, et al. Energy output characteristics of CL-20-based aluminized explosives with different Al/O ratios during deep-water explosion [J]. Acta Armamentarii, 2022, 43(5): 1023–1031. DOI: 10.12382/bgxb.2021.0227. [10] 吕中杰, 高晨宇, 赵开元, 等. 铝质量分数对CL-20基炸药驱动筒壁能量输出结构影响 [J]. 北京理工大学学报, 2023, 43(1): 27–35. DOI: 10.15918/j.tbit1001-0645.2022.015.LÜ Z J, GAO C Y, ZHAO K Y, et al. Influence of aluminum content on energy output structure of CL-20-based explosives driving cylinder wall [J]. Transactions of Beijing Institute of Technology, 2023, 43(1): 27–35. DOI: 10.15918/j.tbit1001-0645.2022.015. [11] SONG S W, TIAN X L, WANG Y, et al. Theoretical insight into density and stability differences of RDX, HMX and CL-20 [J]. CrystEngComm, 2022, 24(8): 1537–1545. DOI: 10.1039/d1ce01577j. [12] SHA Y, ZHANG X B. Reaction mechanism of hydrogen peroxide enhancing detonation performance in the host-guest structure of CL-20 by reactive molecular dynamics simulations [J]. Vacuum, 2023, 211: 111929. DOI: 10.1016/j.vacuum.2023.111929. [13] MAO X X, JIANG L F, LI Y F, et al. Preparation of sub-micron sized CL-20 and its mechanical and thermal properties [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(1): 52–60. DOI: 10.1002/prep.202000137. [14] GAO F B, JING J Q, CHENG W J, et al. Molecular dynamics simulation of bilayer core-shell structure of CL-20 surface-modified by polydopamine coated with polymer binder [J]. Materials Today Communications, 2023, 37: 107099. DOI: 10.1016/j.mtcomm.2023.107099. [15] HE W J, LI Y N, BAO P, et al. Utilizing surface modification in coating technology to enhance the efficiency of CL-20 desensitization [J]. FirePhysChem, 2024, 4(1): 72–79. DOI: 10.1016/j.fpc.2023.10.002. [16] ZHANG X P, CHEN S S, WU Y G, et al. A novel cocrystal composed of CL-20 and an energetic ionic salt [J]. Chemical Communications, 2018, 54(94): 13268–13270. DOI: 10.1039/c8cc06540c. [17] LIU K, ZHANG G, LUAN J Y, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT [J]. Journal of Molecular Structure, 2016, 1110: 91–96. DOI: 10.1016/j.molstruc.2016.01.027. [18] ANDERSON S R, DUBÉ P, KRAWIEC M, et al. Promising CL-20-based energetic material by cocrystallization [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(5): 783–788. DOI: 10.1002/prep.201600065. [19] LIU N, DUAN B H, LU X M, et al. Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation [J]. CrystEngComm, 2018, 20(14): 2060–2067. DOI: 10.1039/C8CE00006A. [20] 王克强. 炸药破甲威力与爆轰参数之间定量关系的探讨 [J]. 火炸药学报, 1999, 18(2): 25–29. DOI: 10.3969/j.issn.1007-7812.1999.02.007.WANG K Q. Studies on the quantitative relation between the penetration performance and explosive properties [J]. Chinese Journal of Explosives & Propellants, 1999, 18(2): 25–29. DOI: 10.3969/j.issn.1007-7812.1999.02.007. [21] 南宇翔. 高能炸药爆炸驱动金属能量输出规律研究 [D]. 北京: 北京理工大学, 2015: 109–112.NAN Y X. Law of energy release for metal-driving by high-energy explosive [D]. Beijing: Beijing Institute of Technology, 2015: 109–112. [22] 王树有, 南宇翔, 蒋建伟, 等. 典型CL-20和HMX基压装炸药爆炸驱动特性对比 [J]. 含能材料, 2021, 29(4): 332–337. DOI: 10.11943/CJEM2020301.WANG S Y, NAN Y X, JIANG J W, et al. Comparative experimental study on explosion driving performance of typical CL-20 and HMX-based pressed explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(4): 332–337. DOI: 10.11943/CJEM2020301. [23] 谈乐斌, 张相炎, 管红根, 等. 火炮概论 [M]. 北京: 北京理工大学出版社, 2005: 124–124.TAN L B, ZHANG X Y, GUAN H G, et al. Introduction to artillery [M]. Beijing: Beijing Institute of Technology Press, 2005: 124–124. [24] 皮铮迪. CL-20混合炸药冲击起爆特征及爆轰波成长规律研究 [D]. 北京: 北京理工大学, 2016.PI Z D. Investigate the shock into the detonation characteristics and rules of CL-20-based explosives [D]. Beijing: Beijing Institute of Technology, 2016. [25] 皮铮迪, 陈朗, 刘丹阳, 等. CL-20基混合炸药的冲击起爆特征 [J]. 爆炸与冲击, 2017, 37(6): 915–923. DOI: 10.11883/1001-1455(2017)06-0915-09.PI Z D, CHEN L, LIU D Y, et al. Shock initiation of CL-20 based explosives [J]. Explosion and Shock Waves, 2017, 37(6): 915–923. DOI: 10.11883/1001-1455(2017)06-0915-09. [26] 高家乐, 周霖, 苗飞超, 等. 过载环境下炸药装药点火过程的数值模拟 [J]. 火炸药学报, 2022, 45(3): 323–331. DOI: 10.14077/j.issn.1007-7812.202203031.GAO J L, ZHOU L, MIAO F C, et al. Numerical simulation of ignition process of explosive charge in overload environment [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 323–331. DOI: 10.14077/j.issn.1007-7812.202203031. [27] 周霖, 倪磊, 李东伟, 等. 炸药抗过载性能试验方法 [J]. 兵工学报, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.ZHOU L, NI L, LI D W, et al. Test method for anti-overload performance of explosives [J]. Acta Armamentarii, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074. [28] 王世英, 胡焕性. B炸药装药发射安全性落锤模拟加载实验研究 [J]. 爆炸与冲击, 2003, 23(3): 275–278. DOI: 10.11883/1001-1455(2003)03-0275-4.WANG S Y, HU H X. Drop hammer simulation study on launch safety of composite B [J]. Explosion and Shock Waves, 2003, 23(3): 275–278. DOI: 10.11883/1001-1455(2003)03-0275-4. [29] 高立龙, 牛余雷, 王浩, 等. 典型炸药柱的400 kg落锤撞击感度特性分析 [J]. 含能材料, 2011, 19(4): 428–431. DOI: 10.3969/j.issn.1006-9941.2011.04.017.GAO L L, NIU Y L, WANG H, et al. Analysis of impact sensitivity characteristics for typical explosive cylinder [J]. Chinese Journal of Energetic Materials, 2011, 19(4): 428–431. DOI: 10.3969/j.issn.1006-9941.2011.04.017. [30] 许志峰, 屈可朋. 装药发射安全性模拟加载实验方法研究 [J]. 火工品, 2015, 37(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.XU Z F, QU K P. Study on experimental method of simulation loading for launch safety of charge [J]. Initiators & Pyrotechnics, 2015, 37(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014. [31] 黄正平, 张锦云, 张汉萍, 等. 后坐冲击模拟实验装置工作机理研究 [J]. 北京理工大学学报, 1994, 14(4): 371–377. DOI: 10.15918/j.tbit1001-0645.1994.04.008.HUANG Z P, ZHANG J Y, ZHANG H P, et al. Working principles of a setback-shock simulator [J]. Journal of Beijing Institute of Technology, 1994, 14(4): 371–377. DOI: 10.15918/j.tbit1001-0645.1994.04.008. [32] 刘海营, 张景林, 王作山. 炸药撞击感度的研究综述 [J]. 山西化工, 2007, 27(6): 57–59. DOI: 10.16525/j.cnki.cn14-1109/tq.2007.06.025.LIU H Y, ZHANG J L, WANG Z S. Study on the explosive impact sensitivity [J]. Shanxi Chemical Industry, 2007, 27(6): 57–59. DOI: 10.16525/j.cnki.cn14-1109/tq.2007.06.025. [33] TURCOTTE R, VACHON M, KWOK Q S M, et al. Thermal study of HNIW (CL-20) [J]. Thermochimica Acta, 2005, 433(1/2): 105–115. DOI: 10.1016/j.tca.2005.02.021. [34] 范夕萍, 王霞, 刘子如, 等. 纳米Cu粉对HMX和RDX热分解的催化作用 [J]. 含能材料, 2005, 13(5): 284–287. DOI: 10.3969/j.issn.1006-9941.2005.05.003.FAN X P, WANG X, LIU Z R, et al. Catalysis of nano Cu powder on the thermal decomposition of HMX and RDX [J]. Chinese Journal of Energetic Materials, 2005, 13(5): 284–287. DOI: 10.3969/j.issn.1006-9941.2005.05.003. -