含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性

韦箫 程扬帆 朱容康 孙仁浩 汪泉

韦箫, 程扬帆, 朱容康, 孙仁浩, 汪泉. 含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0117
引用本文: 韦箫, 程扬帆, 朱容康, 孙仁浩, 汪泉. 含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0117
WEI Xiao, CHENG Yangfan, ZHU Rongkang, SUN Renhao, WANG Quan. Explosion characteristics and thermal safety of low detonation velocity emulsion explosives containing coal-based solid waste fly ash microspheres[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0117
Citation: WEI Xiao, CHENG Yangfan, ZHU Rongkang, SUN Renhao, WANG Quan. Explosion characteristics and thermal safety of low detonation velocity emulsion explosives containing coal-based solid waste fly ash microspheres[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0117

含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性

doi: 10.11883/bzycj-2024-0117
基金项目: 国家自然科学基金(12272001);安徽省高校自然科学基金杰青项目(2023AH020026);
详细信息
    作者简介:

    韦 箫(1999- ),男,硕士研究生,1823739862@qq.com

    通讯作者:

    程扬帆(1987- ),男,博士,教授,博士生导师,cyf518@mail.ustc.edu.cn

  • 中图分类号: O389

Explosion characteristics and thermal safety of low detonation velocity emulsion explosives containing coal-based solid waste fly ash microspheres

  • 摘要: 选用粉煤灰中的漂珠作为敏化剂和惰性添加剂来制备低爆速乳化炸药,研究了漂珠粒径和含量对乳化炸药爆炸特性和安全性的影响;采用探针法、铅柱压缩法和空中爆炸测试法分别测得添加不同粒径含量漂珠乳化炸药的爆速、猛度和空中爆炸冲击波参数,并通过储存期实验和热分析实验对乳化炸药进行安全性测试。结果表明,乳化炸药的爆速、猛度、冲击波峰值压力、正冲量和正压作用时间均随漂珠含量的增加呈先增大后降低的趋势。当漂珠质量分数为15%时,乳化炸药的爆轰性能最佳;当漂珠质量分数为45%时,炸药的爆速显著降低,爆速范围在21912312 m/s,可满足爆炸焊接用炸药的使用条件。此外,发现漂珠含量相同时,添加D50=79 μm漂珠的乳化炸药爆轰性能要高于添加D50=116 μm和D50=47 μm漂珠的乳化炸药。储存期和热分析实验结果表明,添加漂珠的低爆速乳化炸药储存期显著优于传统添加黏土颗粒的低爆速乳化炸药,漂珠的加入并未引发乳化基质产生新的热分解反应,添加15%漂珠的乳化炸药的热分解活化能比乳化基质只增加了0.3%,说明漂珠的加入并未对乳化基质热稳定性产生明显影响。
  • 图  1  漂珠宏观图

    Figure  1.  Macro picture of fly ash microspheres

    图  2  漂珠XRD图谱

    Figure  2.  XRD pattern of the fly ash microspheres

    图  3  漂珠扫描电镜图

    Figure  3.  SEM of the fly ash microspheres

    图  4  爆速测量装置和装药

    Figure  4.  Detonation velocity measuring device and the charge

    图  5  猛度测量装置和装药图

    Figure  5.  Brisance measuring device and the charge diagram

    图  6  球形乳化炸药药包

    Figure  6.  A spherical emulsion explosive charge

    图  7  空中爆炸实验装置示意图

    Figure  7.  Schematic diagram of air explosion experimental device

    图  8  乳化基质和不同漂珠含量(D50=79 μm)乳化炸药微观形貌

    Figure  8.  Micrograph of emulsion matrix and explosives with different content of fly ash microspheres (D50=79 μm)

    图  9  漂珠含量及粒径对于炸药爆速(左)和猛度(右)的影响

    Figure  9.  Influence of mass fraction and particle size of the fly ash microspheres on the detonation velocity (left) and brisance (right) of the explsive

    图  10  添加不同含量漂珠(D50=79 μm)乳化炸药的压力-时间曲线

    Figure  10.  Pressure-time curves of emulsion explosive with different content of fly ash microspheres (D50=79 μm)

    图  11  不同粒径漂珠含量对乳化炸药空中冲击波峰值压力的影响

    Figure  11.  Effect of the fly ash microspheres content of different particle size on peak pressure of air shock wave of emulsion explosive

    图  12  不同含量漂珠乳化炸药爆轰示意图

    Figure  12.  Detonation schematic diagram of emulsion explosive with different content fly ash microspheres

    图  13  5 ℃/min升温速率下乳化基质和乳化炸药的TG曲线

    Figure  13.  TG curve of emulsion matrix and emulsion explosive at 5 ℃/min−1 heating rate

    图  14  四组不同升温速率下的热重曲线

    Figure  14.  Thermal gravity curves of emulsion explosives at four different heating rates

    表  1  乳化基质组分

    Table  1.   Composition of emulsion matrix

    组分NH4NO3NaNO3C18H38C12H26C14H44O6H2O
    质量分数/%75104128
    下载: 导出CSV

    表  2  漂珠元素组成

    Table  2.   Element composition of the fly ash microspheres

    元素 O Na Mg Al Si K Ca Fe
    质量分数/% 34.762 0.019 11.296 35.115 15.034 1.263 0.124 2.387
    下载: 导出CSV

    表  3  乳化炸药配方

    Table  3.   Emulsion explosive formulation

    样本 质量分数/% D50/μm 样本 质量分数/% D50/μm 样本 质量分数/% D50/μm
    乳化基质 漂珠 乳化基质 漂珠 乳化基质 漂珠
    1 95 5 47 6 95 5 79 11 95 5 116
    2 85 15 7 85 15 12 85 15
    3 75 25 8 75 25 13 75 25
    4 65 35 9 65 35 14 65 35
    5 55 45 10 55 45 15 55 45
    下载: 导出CSV

    表  4  漂珠对乳化炸药密度影响

    Table  4.   Effect of the fly ash microspheres on density of emulsion explosive

    质量分数/% 密度/(g·cm−3)
    D50=47 μm D50=79 μm D50=116 μm
    5 1.34 1.33 1.31
    15 1.29 1.27 1.25
    25 1.25 1.22 1.16
    35 1.14 1.11 1.07
    45 0.99 0.97 0.91
    下载: 导出CSV

    表  5  添加不同含量漂珠($D_{50}=47,79 $$116\;{\text{μm}} $)乳化炸药的爆速和猛度

    Table  5.   Detonation velocities and intensities of emulsion explosives with different content of fly ash microspheres ($D_{50}=47,79 $ and $116\;{\text{μm}} $)

    质量分数(%)速度/(m·s−1)猛度/mm
    D50=47 μmD50=79 μmD50=116 μmD50=47 μmD50=79 μmD50=116 μm
    527032836249214.314.414
    1543944488431415.816.115.5
    2537073826365011.711.911.5
    353138326229997.68.07.2
    452237231221914.04.33.5
    下载: 导出CSV

    表  6  添加不同含量漂珠($D_{50}=79\;{\text{μm}} $)乳化炸药的冲击波参数

    Table  6.   Shock wave parameters of emulsion explosives with different contents of the fly microspheres

    质量分数% ΔPmax/kPa t+/μs I+/Pa·s
    5 71.16 475.0 14.52
    15 102.03 498.1 19.07
    25 92.17 487.3 17.68
    35 66.67 464.7 13.39
    45 42.59 426.3 8.75
    下载: 导出CSV

    表  7  不同储存时间下的乳化炸药(漂珠D50=79 μm)爆炸冲击波峰值压力

    Table  7.   Peak pressure of explosion shock wave of emulsion explosives at different storage time (the D50 of fly ash microspheres is 79 μm)

    质量分数/% 冲击波峰值压力/kPa 下降比例/%
    0天后 7天后 30天后 7天后 30天后
    5 71.16 68.77 65.31 3.36 8.22
    15 102.03 99.36 94.03 2.62 7.84
    25 92.17 90.72 86.56 1.57 6.09
    35 66.67 62.28 55.49 6.58 16.77
    45 42.59 40.35 33.70 5.26 20.87
    下载: 导出CSV

    表  8  不同加热速率下样品分解50%的相应温度

    Table  8.   The corresponding temperature of sample decomposition of 50% at different heating rates

    升温速率/ (K·min−1)温度/K
    乳化基质含15% 漂珠
    5513.98512.40
    10526.65525.78
    15535.65532.65
    20542.15541.49
    下载: 导出CSV
  • [1] FANG H, CHENG Y F, TAO C, et al. Effects of content and particle size of cenospheres on the detonation characteristics of emulsion explosive [J]. Journal of Energetic Materials, 2021, 39(2): 197–214. DOI: 10.1080/07370652.2020.1770896.
    [2] CHENG Y F, YAN S L, MA H H, et al. A new type of functional chemical sensitizer MgH2 for improving pressure desensitization resistance of emulsion explosives [J]. Shock Waves, 2016, 26(2): 213–219. DOI: 10.1007/s00193-015-0585-0.
    [3] TAO C, CHENG Y F, FANG H, et al. Fabrication and characterization of a novel underground mining emulsion explosive containing thickening microcapsules [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(6): 932–941. DOI: 10.1002/prep.201900351.
    [4] 汪旭光. 乳化炸药 [M]. 第二版. 北京: 冶金工业出版社, 2008.

    WANG X G. Emulsion explosives [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2008.
    [5] MAHADEVAN E G. Ammonium nitrate explosives for civil applications: slurries, emulsions and ammonium nitrate fuel oils [M]. Weinheim: John Wiley & Sons, 2013.
    [6] 李子涵, 程扬帆, 王浩, 等. 负压环境对乳化炸药爆炸温度场和有害效应的影响 [J]. 爆炸与冲击, 2023, 43(8): 082301. DOI: 10.11883/bzycj-2023-0106.

    LI Z H, CHENG Y F, WANG H, et al. Influences of negative pressure conditions on the explosion temperature field and harmful effects of emulsion explosive [J]. Explosion and Shock Waves, 2023, 43(8): 082301. DOI: 10.11883/bzycj-2023-0106.
    [7] 方安明, 方应飞, 夏治园. 低爆速粉状乳化炸药在光面爆破中的应用 [J]. 火工品, 2023(5): 69–73. DOI: 10.3969/j.issn.1003-1480.2023.05.013.

    FANG A M, FANG Y F, XIA Z Y. Application of low detonation velocity powder emulsion explosive in smooth blasting [J]. Initiators & Pyrotechnics, 2023(5): 69–73. DOI: 10.3969/j.issn.1003-1480.2023.05.013.
    [8] 陈啸林, 张智宇, 王凯, 等. 某露天矿山预裂爆破参数优选与试验研究 [J]. 高压物理学报, 2023, 37(6): 065301. DOI: 10.11858/gywlxb.20230692.

    CHEN X L, ZHANG Z Y, WANG K, et al. Optimization and experimental study of pre-splitting blasting parameters in a certain open-pit mine [J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065301. DOI: 10.11858/gywlxb.20230692.
    [9] SHERPA·B B, KUMAR P D, UPADHYAY A, et al. Low velocity of detonation explosive welding (LVEW) process for metal joining [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(10): 1554–1565. DOI: 10.1002/prep.202000019.
    [10] CHEN X, INAO D, TANAKA S, et al. Explosive welding of Al alloys and high strength duplex stainless steel by controlling energetic conditions [J]. Journal of Manufacturing Processes, 2020, 58: 1318–1333. DOI: 10.1016/j.jmapro.2020.09.037.
    [11] 邓伟, 陆明, 田晓洁. 爆速对爆炸焊接铝/不锈钢复合管界面及结合性能的影响 [J]. 爆炸与冲击, 2015, 35(1): 82–88. DOI: 10.11883/1001-1455(2015)01-0082-07.

    DENG W, LU M, TIAN X J. Influence of detonation velocity on interface and combination performances of Al/316L composite tube by explosive welding [J]. Explosion and Shock Waves, 2015, 35(1): 82–88. DOI: 10.11883/1001-1455(2015)01-0082-07.
    [12] POMASONCCO-NAJARRO A, TRUJILLO-VALERIO C, ARAUZO-GALLARDO L, et al. Pre-split blasting design to reduce costs and improve safety in underground mining [J]. Energy Reports, 2022, 8(S9): 1208–1225. DOI: 10.1016/j.egyr.2022.07.109.
    [13] 钱海, 吴红波, 邢化岛, 等. 铝粉含量和粒径对乳化炸药作功能力的影响 [J]. 火炸药学报, 2017, 40(1): 40–44. DOI: 10.14077/i.issn.1007-7812.2017.01.008.

    QIAN H, WU H B, XING H D, et al. Effect of aluminum content and particle size on the power of emulsion explosives [J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 40–44. DOI: 10.14077/i.issn.1007-7812.2017.01.008.
    [14] 李雪交, 缪广红, 杨明, 等. 蜂窝型低爆速乳化炸药的制备及应用 [J]. 火炸药学报, 2018, 41(2): 153–158. DOI: 10.14077/j.issn.1007-7812.2018.02.009.

    LI X J, MIAO G H, YANG M, et al. Preparation and application of low detonation emulsion explosive with honeycomb structure [J]. Chinese Journal of Explosives & Propellants, 2018, 41(2): 153–158. DOI: 10.14077/j.issn.1007-7812.2018.02.009.
    [15] 周国安, 马宏昊, 沈兆武, 等. 以黏土颗粒为惰性剂的低爆速乳化炸药爆炸性能及爆轰机理 [J]. 火炸药学报, 2018, 41(3): 289–293,302. DOI: 10.14077/j.issn.1007-7812.2018.03.013.

    ZHOU G A, MA H H, SHEN Z W, et al. Detonation properties and mechanism of low detonation velocity emulsion explosives with clay particles as the inert agents [J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 289–293,302. DOI: 10.14077/j.issn.1007-7812.2018.03.013.
    [16] 孙宝亮, 黄文尧, 汪泉, 等. 硅藻土为载体的低爆速乳化炸药制备与性能 [J]. 含能材料, 2023, 31(1): 26–34. DOI: 10.11943/CJEM2022092.

    SUN B L, HUANG W Y, WANG Q, et al. Preparation and performance of diatomite emulsion explosive with low detonation velocity [J]. Chinese Journal of Energetic Materials, 2023, 31(1): 26–34. DOI: 10.11943/CJEM2022092.
    [17] 高玉刚. 珍珠岩对乳化炸药爆炸性能的影响 [J]. 火工品, 2021(2): 49–52. DOI: 10.3969/j.issn.1003-1480.2021.02.013.

    GAO Y G. The effect of perlite on explosion property of emulsion explosive [J]. Initiators & Pyrotechnics, 2023(2): 26–34. DOI: 10.3969/j.issn.1003-1480.2021.02.013.
    [18] DERIBAS A A, MEDVEDEV A E, RESHETNYAK A Y, et al. Detonation of emulsion explosives containing hollow microspheres [J]. Doklady Physics, 2003, 48(4): 163–165. DOI: 10.1134/1.1574370.
    [19] XIA H B, WANG S G, BEN H F. Microstructure and mechanical properties of Ti/Al explosive cladding [J]. Materials & Design, 2014, 56: 1014–1019. DOI: 10.1016/j.matdes.2013.12.012.
    [20] YUNOSHEV A S, SIL’VESTROV V V, PLASTININ A V, et al. Influence of artificial pores on the detonation parameters of an emulsion explosive [J]. Combustion, Explosion, and Shock Waves, 2017, 53(2): 205–210. DOI: 10.1134/s0010508217020113.
    [21] MEDVEDEV A E, FOMIN V M, RESHETNYAK A Y. Mechanism of detonation of emulsion explosives with microballoons [J]. Shock Waves, 2008, 18(2): 107–115. DOI: 10.1007/s00193-008-0141-2.
    [22] WANG M, CHEN D, WANG H, et al. A review on fly ash high-value synthesis utilization and its prospect [J]. Green Energy and Resources, 2024, 2(1): 100062. DOI: 10.1016/j.gerr.2024.100062.
    [23] EARY L E, RAI D, MATTIGOD S V, et al. Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements [J]. Journal of Environmental Quality, 1990, 19(2): 202–214. DOI: 10.2134/jeq1990.00472425001900020005x.
    [24] LIU J Q, ZHANG X M, WANG Y C, et al. Study on the effect of the density and incorporation amount of coal fly ash hollow microspheres on the fire performance of epoxy resin [J]. Materialstoday Communications, 2023, 34: 105213. DOI: 10.1016/j.mtcomm.2022.105213.
    [25] ZONG Y B, WAN Q L, CANG D Q. Preparation of anorthite-based porous ceramics using high-alumina fly ash microbeads and steel slag [J]. Ceramics International, 2019, 45(17): 22445–22451. DOI: 10.1016/j.ceramint.2019.08.003.
    [26] ANSHITS A G, ANSHITS N N, DERIBAS A A, et al. Detonation velocity of emulsion explosives containing cenospheres [J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 591–598. DOI: 10.1007/s10573-005-0074-3.
    [27] 张宝平, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2001.
    [28] ZHOU G A, MA H H, SHEN Z W, et al. Study on a new cleaner emulsion explosive containing common clay [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(8): 789–798. DOI: 10.1002/prep.201700282.
    [29] CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585–591. DOI: 10.1002/prep.201700045.
    [30] KESHAVARZ M H. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives [J]. Journal of Hazardous Materials, 2009, 166(2/3): 762–769. DOI: 10.1016/j.jhazmat.2008.11.117.
    [31] XU S, TAN L, LIU J P, et al. Cause analysis of spontaneous combustion in an ammonium nitrate emulsion explosive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 181–188. DOI: 10.1016/j.jlp.2016.05.010.
    [32] 郭瑞, 李南, 张新燕, 等. 微米/纳米PMMA粉尘爆炸抑制过程中压力特性与热化学动力学的相关性 [J]. 爆炸与冲击, 2023, 43(12): 125401. DOI: 10.11883/bzycj-2023-0058.

    GUO R, LI N, ZHANG X Y, et al. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion [J]. Explosion and Shock Waves, 2023, 43(12): 125401. DOI: 10.11883/bzycj-2023-0058.
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  21
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-08-14
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回