典型战斗部侵彻爆炸下块石混凝土的遮弹层设计

吴昊 张瑜 程月华 岑国华

吴昊, 张瑜, 程月华, 岑国华. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0136
引用本文: 吴昊, 张瑜, 程月华, 岑国华. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0136
WU Hao, ZHANG Yu, CHENG Yuehua, CEN Guohua. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0136
Citation: WU Hao, ZHANG Yu, CHENG Yuehua, CEN Guohua. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0136

典型战斗部侵彻爆炸下块石混凝土的遮弹层设计

doi: 10.11883/bzycj-2024-0136
基金项目: 国家自然科学基金(52308522);工程材料与结构冲击振动四川省重点实验室开放基金(23kfgk01)
详细信息
    作者简介:

    吴 昊(1981- ),男,博士,教授,wuhaocivil@tongji.edu.cn

    通讯作者:

    程月华(1994- ),女,博士,讲师,yhcheng@tongji.edu.cn

  • 中图分类号: O385

Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads

  • 摘要: 针对钻地武器战斗部侵彻爆炸作用下块石混凝土遮弹层的抗力评估与工程设计,首先,提出了块石混凝土遮弹层的有限元建模方法,其可靠性通过含不同粗骨料类型(刚玉和玄武岩)、粒径(5~15 mm、5~20 mm、35~45 mm和65~75 mm)和体积率(15%和30%)的超高性能混凝土靶体的准静态和弹体侵彻试验进行验证。然后,以小直径炸弹SDB侵彻半无限厚块石混凝土靶体为基准工况,定量分析了块石类型(刚玉、玄武岩和花岗岩)和无量纲块石粒径(0.3~2.2倍弹径)对侵彻深度的影响,并确定了最优设计原则。最后,开展了3种典型钻地武器(SDB、WDU-43/B和BLU-109/B)的侵彻效应分析,定量对比了普通强度混凝土(normal strength concrete, NSC)、超高性能混凝土(ultra-high performance concrete, UHPC)和刚玉块石混凝土(corundum rubble concrete, CRC)的抗侵彻能力,提出了原型战斗部侵彻爆炸作用下刚玉块石混凝土遮弹层的工程设计方法。结果表明:粒径为1.3~1.7倍弹径的CRC遮弹层抗侵彻性能最优;3种战斗部侵彻作用下最优设计CRC遮弹层的侵彻深度分别为0.29、0.78和0.68 m,较NSC和UHPC遮弹层分别降低了61.8%~69.1%和43.3%~58.0%;3种战斗部侵彻爆炸作用下CRC遮弹层的临界贯穿及震塌厚度分别为0.55、1.41和1.48 m及1.11、2.26和3.17 m,与NSC和UHPC遮弹层相比,临界贯穿厚度分别降低了58.5%~61.2%和43.2%~58.1%,临界震塌厚度分别降低了61.8%~69.2%和34.7%~40.5%。
  • 图  1  战斗部几何尺寸(单位:mm)

    Figure  1.  Geometric dimensions of warheads (Unit: mm)

    图  2  块石混凝土遮弹层建模

    Figure  2.  Modelling of rock-rubble concrete shield

    图  3  有限元模型及数值模拟结果

    Figure  3.  Finite element model and numerical simulation results

    图  4  有限元模型和数值模拟结果

    Figure  4.  Finite element model and numerical simulation results

    图  5  含刚玉骨料UHPC靶体有效塑性应变云图

    Figure  5.  Effective plastic strain contours of corundum aggregated UHPC targets

    图  6  原型战斗部侵彻块石混凝土遮弹层数值仿真策略

    Figure  6.  Numerical simulation strategy for prototype warheads penetrating on rock-rubble concrete shields

    图  7  3种类型块石混凝土遮弹层侵彻深度(单位:mm)

    Figure  7.  Penetration depths of three types rock-rubble concrete shields (Unit: mm)

    图  8  弹体变形和破坏形态

    Figure  8.  Deformation and fracture patterns of projectiles

    图  9  4种粒径CRC遮弹层侵彻深度(单位:mm)

    Figure  9.  Penetration depths of CRC shields with four particle sizes (Unit: mm)

    图  10  3种战斗部侵彻CRC遮弹层侵彻深度(单位:mm)

    Figure  10.  Penetration depths of CRC shields with three warheads (Unit: mm)

    图  11  CRC与NSC和UHPC遮弹层的对比

    Figure  11.  Comparisons of CRC with NSC and UHPC shields

    表  1  弹体JC模型参数[23-24]

    Table  1.   JC model parameters of projectile [23-24]

    ρ/(kg·m–3) G/GPa A/MPa B/MPa N C M Tm/K Tr/K cV/(J·kg–1·K–1) ${\dot \varepsilon _0}$
    7 800 81 792 2 483 0.474 0.009 1.07 1 793 298 477 1.0×10–4
    D1 D2 D3 D4 D5 C/(m·s–1) S1 S2 S3 γ0 α
    0.692 1.581 –3.053 –0.042 2.98 4 569 1.49 0 0 2.17 0.46
    下载: 导出CSV

    表  2  刚玉JH-2模型参数[27-28]

    Table  2.   JH-2 model parameters of corundum[27-28]

    ρ/(kg·m–3) G/GPa A0 B0 N0 C M0
    3 800 152 0.88 0.431 0.64 0.007 0.6
    ${\dot \varepsilon _0}$ T/GPa σHEL/GPa pHEL/GPa D10 D20 Fs
    1.0 2.62 6.75 3.65 0.012 5 1.85 1.5
    下载: 导出CSV

    表  3  玄武岩、花岗岩和UHPC基体HJC模型参数[29-30]

    Table  3.   HJC model parameters of basalt, granite and UHPC matrix [29-30]

    组分 ρ/(kg·m–3) G/GPa A1/MPa B1/MPa N1 C fc'/MPa Tmax/MPa ${\dot \varepsilon _0}$ εmin
    玄武岩 3 000 32.25 0.3 1.73 0.79 0.005 120 6.792 1.0 0.01
    花岗岩 2 660 30.50 0.3 1.73 0.79 0.005 154 7.694 1.0 0.01
    基体 2 500 24.02 0.3 1.73 0.79 0.005 115 6.649 1.0 0.01
    组分 Smax pc/MPa μc/10−5 pl/GPa μl D11 D21 K1/GPa K2/GPa K3/GPa
    玄武岩 7.0 40 93 3.47 0.1 0.04 1.0 116 –243 506
    花岗岩 7.0 51 126 3.47 0.11 0.04 1.0 116 –243 506
    基体 7.0 38.33 119.7 3.47 0.08 0.04 1.0 116 –243 506
    下载: 导出CSV

    表  4  块石和UHPC基体界面参数

    Table  4.   Parameters of interface between rock-rubble and UHPC matrix

    法向强度/MPa 法向断裂能/(MN·mm–1) 切向强度/MPa 切向断裂能/(MN·mm–1) 法向刚度/(GPa·m–1) 切/法向刚度比 损伤指数
    9 1 27 3 5 0.42 –2
    下载: 导出CSV

    表  5  立方体单轴压缩试验结果

    Table  5.   Cube uniaxial compression test results

    工况 骨料类型 粒径/mm 体积率% 抗压强度/MPa 误差%
    试验值 模拟值
    5-20BA15% 玄武岩 5~20 15 115.5 115.3 (114/115/117) −0.1
    5-20BA30% 玄武岩 5~20 30 118.9 121.7 (121/121/123) 2.3
    5-20CA15% 刚玉 5~20 15 123.0 121.0 (116/127/120) −1.6
    5-20CA30% 刚玉 5~20 30 137.1 138.0 (137/139/138) 0.7
    35-45CA30% 刚玉 35~45 30 145.3 148.7 (142/154/150) 2.3
    下载: 导出CSV

    表  6  试验工况及侵彻深度结果

    Table  6.   Test cases and penetration depths

    工况骨料类型粒径/mm体积率/%侵彻深度/mm误差/%
    试验值[8-9]模拟值
    5-20CA30%刚玉5~203099.5(98/101)101.1(92.3/109.5/94.2/113.3/96.2)1.6
    35-45CA30%刚玉35~453044.5(21/68)51.6(45.3/53.3/46.9/56.8/55.8)16.0
    65-75CA30%刚玉65~753048.0(59/37)50.9(56.2/47.8/45.4/50.8/54.2)6.0
    5-15BA30%玄武岩5~1530122.0(124/120)124.8(124.9/126.4/126.5/123.0/123.2)2.3
    下载: 导出CSV

    表  7  网格尺寸过渡计算结果的对比

    Table  7.   Comparisons of results for various mesh sizes

    块石类型 模型 侵彻深度/mm 误差/% 弹体残余长度/mm 误差/%
    2 mm+2 mm 5 mm+10 mm 2 mm+2 mm 5 mm+10 mm
    刚玉 1 108.0 107.3 0.65 320.8 316.1 1.47
    2 95.1 93.9 1.26 315.4 311.4 1.27
    3 103.7 102.2 1.45 317.5 312.6 1.54
    平均值 102.3 101.1 1.17 317.9 313.4 1.43
    玄武岩 1 132.1 130.5 1.21 327.8 334.8 −2.14
    2 117.3 115.7 1.36 320.2 325.9 −1.78
    3 128.3 125.8 1.95 324.6 330.3 −1.76
    平均值 125.9 124.0 1.51 324.2 330.3 −1.89
    花岗岩 1 134.0 134.3 −0.22 333.2 331.0 0.66
    2 119.5 118.9 0.50 342.3 345.7 −0.99
    3 130.4 127.9 1.92 337.4 342.6 −1.55
    平均值 128.0 127.0 0.78 337.6 339.8 −0.63
    下载: 导出CSV

    表  8  不同遮弹层模拟结果

    Table  8.   Simulation results of different shields

    工况块石类型无量纲粒径范围块石体积率/%侵彻深度/mm弹体残余长度/mm
    0.8-1.2CA43%刚玉0.8D~1.2D43.1361.51 480
    0.8-1.2BA43%玄武岩0.8D~1.2D43.1588.11 620
    0.8-1.2GA43%花岗岩0.8D~1.2D43.1617.21 630
    0.3-0.7CA46%刚玉0.3D~0.7D46.6664.91 585
    0.8-1.2CA42%刚玉0.8D~1.2D42.4369.81 505
    1.3-1.7CA41%刚玉1.3D~1.7D41.9289.71 415
    1.8-2.2CA40%刚玉1.8D~2.2D40.3275.71 300
    下载: 导出CSV

    表  9  3种战斗部的数值模拟结果

    Table  9.   Numerical simulation results with three warheads

    战斗部侵彻深度/m临界贯穿系数[18-19]临界贯穿厚度/m临界震塌系数[18-19]临界震塌厚度/m
    CRCUHPC[19]NSC[18]CRCUHPC[19]NSC[18]CRCUHPC[19]NSC[18]
    SDB0.290.690.941.880.551.301.403.831.111.703.60
    WDU-43/B0.781.412.171.811.412.553.402.902.263.806.30
    BLU-109/B0.681.201.782.171.482.603.804.663.175.008.30
    下载: 导出CSV
  • [1] AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESL-TR-83-39 [R]. Florida: Engineering and Services Laboratory, Air Force Engineering and Services Center, Tyndall Air Force Base, 1982.
    [2] GELMAN M D, RICHARD B N, ITO Y M. Impact of armor-piercing projectile into array of large caliber boulders: SL-87-30 [R]. Vicksburg, Mississippi: U. S. Army Engineer Waterways Experiment Station, 1987.
    [3] ROHANI B. Penetration of kinetic energy projectiles into rock-rubble/boulder overlays [C]//Proceedings of the 3rd International Symposium on Interaction of Nonnuclear Munitions with Structures. Mannheim: Federal Minister of Defense, 1987: 863.
    [4] LANGHEIM H, PAHL H, SCHMOLINSKE E, et al. Subscale penetration tests with bombs and advanced penetration against hardened structures [C]//Proceedings of the 6th International Symposium on Interaction of Nonnuclear Munitions with Structures. Panama: Wright Laboratory Air Base Systems Branch, 1993: 12–17.
    [5] BLUDAU C, KEUSER M, KUSTERMANN A. Perforation resistance of high-strength concrete panels [J]. Structural Journal, 2006, 103(2): 188–195. DOI: 10.14359/15176.
    [6] ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [7] ZHANG M H, SHARIF M S H, LU G. Impact resistance of high-strength fibre-reinforced concrete [J]. Magazine of Concrete Research, 2007, 59(3): 199–210. DOI: 10.1680/macr.2007.59.3.199.
    [8] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [9] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510-1 320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [10] 宫俊, 吴昊, 方秦, 等. 刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟 [J]. 振动与冲击, 2017, 36(1): 55–63. DOI: 10.13465/j.cnki.jvs.2017.01.008.

    GONG J, WU H, FANG Q, et al. Test and mesoscale numerical simulation for corundum-aggregate ultra-high performance cementitious composites against projectile penetration [J]. Journal of Vibration and Shock, 2017, 36(1): 55–63. DOI: 10.13465/j.cnki.jvs.2017.01.008.
    [11] 唐德高, 贺虎成, 陈向欣, 等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37–39. DOI: 10.13465/j.cnki.jvs.2005.06.011.

    TANG D G, HE H C, CHEN X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37–39. DOI: 10.13465/j.cnki.jvs.2005.06.011.
    [12] 穆朝民, 施鹏, 辛凯. 射弹侵彻块石遮弹层的数值模拟 [J]. 兵器材料科学与工程, 2012, 35(5): 4–8. DOI: 10.14024/j.cnki.1004-244x.2012.05.001.

    MU C M, SHI P, XIN K. Numerical simulation on rock anti-penetration layer against penetrating [J]. Ordnance Material Science and Engineering, 2012, 35(5): 4–8. DOI: 10.14024/j.cnki.1004-244x.2012.05.001.
    [13] 方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究 [J]. 工程力学, 2013, 30(1): 14–21,30. DOI: 10.6052/j.issn.1000-4750.2011.06.0398.

    FANG Q, ZHANG J H, HUAN Y, et al. The investigation into three-dimensional mesoscale modelling of fully-graded concrete [J]. Engineering Mechanics, 2013, 30(1): 14–21,30. DOI: 10.6052/j.issn.1000-4750.2011.06.0398.
    [14] 方秦, 杜涛, 彭永, 等. 对遮弹层抗弹体侵彻性能的讨论 [J]. 防护工程, 2014, 36(5): 31–36.

    FANG Q, DU T, PENG Y, et al. Discussions on the performance of the overlays against the penetration of projectiles [J]. Protective Engineering, 2014, 36(5): 31–36.
    [15] FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. DOI: 10.1016/j.ijimpeng.2013.08.010.
    [16] 逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22. DOI: 10.3969/j.issn.1674-1854.2020.04.002.

    PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22. DOI: 10.3969/j.issn.1674-1854.2020.04.002.
    [17] 柳兴旺, 邓旭艳, 秦青阳, 等. 块石混凝土遮弹层界面对抗侵彻性能影响的数值模拟研究 [J]. 高压物理学报, 2023, 37(2): 025101. DOI: 10.11858/gywlxb.20220669.

    LIU X W, DENG X Y, QIN Q Y, et al. Numerical investigation on effect of interface modelling of rock-rubble shielding overlays on the anti-penetration capability [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 025101. DOI: 10.11858/gywlxb.20220669.
    [18] 程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.

    CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
    [19] 程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J/OL]. 爆炸与冲击, 2024[2024-05-15]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0061. DOI: 10.11883/bzycj-2024-0061.

    CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J/OL]. Explosion and Shock Waves, 2024[2024-05-15]. https://www.bzycj.cn/cn/article/doi/ 10.11883/bzycj-2024-0061. DOI: 10.11883/bzycj-2024-0061.
    [20] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague: International Ballistics Committee, 1983: 541–547.
    [21] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [22] Livermore Software Technology Corporation (LSTC). LS-DYNA® keyword user’s manual: version 971 [R]. Livermore: Livermore Software Technology Corporation, 2007.
    [23] 方秦, 罗曼, 张锦华, 等. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.

    FANG Q, LUO M, ZHANG J H, et al. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489–495. DOI: 10.11883/1001-1455(2015)04-0489-07.
    [24] CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350.
    [25] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [26] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]// JACKSON N, DICKERT S. Proceedings of the 14th International Symposium on Ballistics. Québec: American Defense Preparedness Association, 1993: 591-600.
    [27] MCLNTOSH G. The Johnson-Holmquist ceramic model as used in LS-DYNA2D: DREV-TM-9822 [R]. Valcartier: Quebec Research and Development Branch Department of National Defence, 1998.
    [28] GAZONAS G A. Implementation of the Johnson-Holmquist II (JH-2) constitutive model into DYNA3D: ARL-TR-2699 [R]. Aberdeen Proving Ground: Army Research Laboratory, 2002.
    [29] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.

    FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook consitiutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.
    [30] REN G M, WU H, FANG Q, et al. Parameters of Holmquist–Johnson–Cook model for high-strength concrete-like materials under projectile impact [J]. International Journal of Protective Structures, 2017, 8(3): 352–367. DOI: 10.1177/2041419617721552.
    [31] BARANOWSKI P, KUCEWICZ M, MAŁACHOWSKI J, et al. Failure behavior of a concrete slab perforated by a deformable bullet [J]. Engineering Structures, 2021, 245: 112832. DOI: 10.1016/j.engstruct.2021.112832.
    [32] Livermore Software Technology Corporation (LSTC). LS-DYNA® keyword user's manual: volume Ⅱ material models: LS-DYNA R7.1 [R]. Livermore: Livermore Software Technology Corporation, 2014: 767–771, 1413–1421.
    [33] 章毅, 张湘茹, 吴昊, 等. 混凝土3D细观模型及准静态力学行为分析 [J]. 工程力学, 2024, 41(8): 80–92. DOI: 10.6052/j.issn.1000-4750.2022.06.0549.

    ZHANG Y, ZHANG X R, WU H, et al. 3D mesoscale model and quasi-static mechanical analysis of concrete behavior [J]. Engineering Mechanics, 2024, 41(8): 80–92. DOI: 10.6052/j.issn.1000-4750.2022.06.0549.
    [34] 张湘茹, 程月华, 吴昊. 基于3D细观模型的混凝土动态压缩行为分析 [J]. 爆炸与冲击, 2024, 44(2): 023102. DOI: 10.11883/bzycj-2022-0541.

    ZHANG X R, CHENG Y H, WU H. Analysis on dynamic compressive behavior of concrete based on a 3D mesoscale model [J]. Explosion and Shock Waves, 2024, 44(2): 023102. DOI: 10.11883/bzycj-2022-0541.
    [35] 张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.

    ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
  • 加载中
图(11) / 表(9)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  14
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-15
  • 修回日期:  2024-09-19
  • 网络出版日期:  2024-09-23

目录

    /

    返回文章
    返回