Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions
-
摘要: 采用激光选区熔化技术制备AlSi10Mg合金并对其进行去应力退火处理,利用光学显微镜、扫描电子显微镜和电子背散射衍射技术研究了合金的微观组织。为了解宽应变率和宽温度耦合作用对AlSi10Mg合金力学行为的影响,通过配有环境温箱的万能试验机和分离式霍普金森压杆分析了AlSi10Mg合金在极端条件下的力学行为。结果表明:AlSi10Mg合金具有精细的胞状-枝晶微观结构,主要包含α-Al相和Si相,经退火处理后,微观组织由断续的、呈链状分布的共晶Si颗粒构成。AlSi10Mg合金在室温、应变率为0.002~4 800 s−1时,呈现出应变率强化效应,且在不同的应变率范围内具有不同的敏感性;在173 K下具有更高的屈服强度和流动应力;当温度为173~243 K时,流动应力对温度不敏感;而温度为293~573 K时,温度敏感性显著提高,合金软化效应随着温度的升高而加剧。基于实验结果拟合得到修正的J-C本构模型并对其进行了验证,该模型可较好地反映材料在高、低温和不同应变率下的力学行为。
-
关键词:
- 激光选区熔化 /
- AlSi10Mg合金 /
- 微观组织 /
- 力学行为 /
- 修正的J-C本构模型
Abstract: In this study, AlSi10Mg alloy was prepared by selective laser melting (SLM) first, and then subjected to stress relieved annealing treatment. The microstructures of the alloy were analyzed by optical microscope (OM), scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) technology. To understand the influence of coupling effects on the mechanical behavior of AlSi10Mg alloy under wide strain rates and wide temperatures, the mechanical behavior of the alloy under extreme conditions (high and low temperatures, high strain-rate) were analyzed by universal testing machine with an environmental chamber and split Hopkinson pressure bar. The results show that AlSi10Mg alloy possesses fine cellular dendritic microstructure, mainly including α-Al and Si phases, and annealing treatment can result in the discontinuous distribution of eutectic Si particles. The average grain size is 3.7 μm. AlSi10Mg alloy displays strain-rate strengthening effect under room temperature condition at 0.002–4 800 s−1, and has different strain-rate sensitivity in different strain-rate ranges. Under high strain-rate conditions, strain hardening effect still dominates. The material has higher yield strength and flow stress at 173 K. When the strain-rate is 0.002 s−1, the SLM AlSi10Mg alloy has different temperature sensitivities in different temperature ranges. The alloy does not have temperature sensitivity in the range of 173–243 K; the material exhibits temperature sensitivity ranging from 293 K to 573 K, and the softening effect due to temperature on the material intensifies with increasing temperature. Based on the J-C constitutive model, a modified J-C constitutive model expressed by piecewise functions is constructed and the experimental results are fitted. In addition, experimental verification was conducted on the modified J-C constitutive model, and the predicted results are basically consistent with the experimental results. Within the scope of the study, the modified J-C constitutive model effectively reflects the mechanical behavior of the alloy at high and low temperatures and under different strain-rate. -
表 1 AlSi10Mg粉末的组成
Table 1. Composition of AlSi10Mg powder
% Al Si Mg Fe Mn Cu Ti 88.93 10.32 0.29 0.16 0.10 0.05 0.15 表 2 AlSi10Mg打印工艺参数
Table 2. Processing parameters of AlSi10Mg
激光功率/
W扫描速度/
(m·s−1)扫描间距/
mm层厚/
mm旋转角度/
(°)预热温度/
K300 1.2 0.2 0.03 30 423 表 3 修正后的J-C本构模型参数
Table 3. Modified J-C constitutive model parameters
A/MPa B/MPa n C1 C2 k 223 120 0.33 0.014 1.83×10−5 2.71 表 4 修正后的J-C本构模型温度参数
Table 4. Revised J-C constitutive model of temperature parameters
T/K m 373 1.026 473 0.879 573 0.590 表 5 低温J-C本构模型参数
Table 5. J-C constitutive model parameters at low temperature
A/MPa B/MPa n C m 234 145 0.3 0.014 2.91 -
[1] XU W F, LUO Y X, ZHANG W, et al. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate [J]. Journal of Materials Science & Technology, 2018, 34(1): 173–184. DOI: 10.1016/j.jmst.2017.05.015. [2] TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Materials Science and Engineering: R, 2000, 29(3/4): 49–113. DOI: 10.1016/S0927-796X(00)00024-3. [3] NG C H, YAHAYA S N M, LAI C F, et al. Reviews on the forming process of heat treatable aluminium alloys [J]. International Journal of Integrated Engineering, 2018, 10(5): 74–79. DOI: 10.30880/ijie.2018.10.05.012. [4] ABOULKHAIR N T, SIMONELLI M, PATTY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Progress in Materials Science, 2019, 106: 100578. DOI: 10.1016/j.pmatsci.2019.100578. [5] KOTADIA H R, GIBBONS G, DAS A, et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties [J]. Additive Manufacturing, 2021, 46: 102155. DOI: 10.1016/j.addma.2021.102155. [6] LIMBASIYA N, JAIN A, SONI H, et al. A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg [J]. Journal of Materials Research and Technology, 2022, 22(1): 1141–1176. DOI: 10.1016/j.jmrt. 2022.09.092. DOI: 10.1016/j.jmrt.2022.09.092. [7] SERT E, HITZLER L, HAFENSTEIN S, et al. Tensile and compressive behaviour of additively manufactured AlSi10Mg samples [J]. Progress in Additive Manufacturing, 2020, 5(3): 305–313. DOI: 10.1007/s40964-020-00131-9. [8] LI P, KIM Y, BOBEL A C, et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg [J]. Acta Materialia, 2021, 220: 117346. DOI: 10.1016/j.actamat.2021.117346. [9] PONNUSAMY P, RAHMAN RASHID R A, MASOOD S H, et al. Mechanical properties of SLM-printed aluminium alloys: a review [J]. Materials, 2020, 13(19): 4301. DOI: 10.3390/ma13194301. [10] ZHAO L, SONG L B, MACIAS J G S, et al. Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg [J]. Additive Manufacturing, 2022, 56: 102914. DOI: 10.1016/j.addma.2022.102914. [11] PARK T H, BAEK M S, HYER H, et al. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process [J]. Materials Characterization, 2021, 176: 111113. DOI: 10.1016/j.matchar.2021.111113. [12] GIOVAGNOLI M, TOCCI M, FORTINI A, et al. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy [J]. Materials Science and Engineering: A, 2021, 802: 140671. DOI: 10.1016/j.msea.2020.140671. [13] KEMPF A, HILGENBERG K. Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines [J]. Materials Science and Engineering: A, 2021, 818: 141371. DOI: 10.1016/j.msea.2021.141371. [14] RABORI A S, FALLAH V. Room temperature strain rate sensitivity of as-built 3D printed AlSi10Mg by laser powder bed fusion [J]. Materials Letters, 2022, 320: 132395. DOI: 10.1016/j.matlet.2022.132395. [15] BAXTER C, CYR E, ODESHI A, et al. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading [J]. Materials Science and Engineering: A, 2018, 731: 296–308. DOI: 10.1016/j.msea.2018.06.040. [16] NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting [J]. Additive Manufacturing, 2018, 22: 823–833. DOI: 10.1016/j.addma.2018.06.001. [17] ALKHATIB S E, SERCOMBE T B. High strain-rate response of additively manufactured light metal alloys [J]. Materials & Design, 2022, 217: 110664. DOI: 10.1016/j.matdes.2022.110664. [18] ZARETSKY E, STERN A, FRAGE N. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting [J]. Materials Science and Engineering: A, 2017, 688: 364–370. DOI: 10.1016/j.msea.2017.02.004. [19] CAO Y, LIN X, WANG Q Z, et al. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. Journal of Materials Science & Technology, 2021, 62: 162–172. DOI: 10.1016/j.jmst.2020.04.066. [20] GHASHGHAY B R, ABEDI H R, SHABESTARI S G, et al. Comparatively evaluating the room and high temperature mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Journal of Materials Research and Technology, 2022, 21: 3570–3578. DOI: 10.1016/j.jmrt.2022.10.162. [21] SALANDARI-RABORI A, DIAK B J, FALLAH V. Dislocation-obstacle interaction evolution in rate dependent plasticity of AlSi10Mg as-built microstructure by laser powder bed fusion [J]. Materials Science and Engineering: A, 2022, 857: 144043. DOI: 10.1016/j.msea.2022.144043. [22] THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Materialia, 2013, 61(5): 1809–1819. DOI: 10.1016/j.actamat.2012.11.052. [23] 张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472.ZHANG W Q, ZHU H H, HU Z H, et al. Study on Selective Laser Melting of AlSi10Mg [J]. Acta Metallurgica Sinica, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472. [24] ALGHAMDI F, SONG X, HADADZADEH A, et al. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties [J]. Materials Science and Engineering: A, 2020, 783: 139296. DOI: 10.1016/j.msea.2020.139296. [25] FATHI P, RAFIEAZAD M, DUAN X, et al. On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering [J]. Corrosion Science, 2019, 157: 126–145. DOI: 10.1016/j.corsci.2019.05.032. [26] WANG X F, SHI T Y, WANG H B, et al. Mechanical behavior and microstructure evolution of Al-Mg-Si-Cu alloy under tensile loading at different strain rates [J]. Materials Research Express, 2019, 6(6): 066548. DOI: 10.1088/2053-1591/ab08d7. [27] YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077. [28] ZHANG C S, WANG C X, GUO R, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation [J]. Journal of Alloys and Compounds, 2019, 773: 59–70. DOI: 10.1016/j.jallcom.2018.09.263. [29] 李娜, 李玉龙, 郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究 [J]. 航空学报, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022.LI N, LI Y L, GUO W G. Comparison of mechanical properties and their temperature dependencies for three aluminium alloys under dynamic load [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022. [30] 汪存显, 索涛, 李玉龙, 等. 不同温度和应变速率下超细晶铝的力学行为 [J]. 中国有色金属学报, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012.WANG C X, SUO T, LI Y L, et al. Mechanical behavior of ultra-grained aluminum at different temperatures and strain rates [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012. [31] LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation [J]. Materials and Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032. [32] LIU C M, LI C G, ZHANG Z, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Optics and Laser Technology, 2020, 123: 105926. DOI: 10.1016/j.optlastec.2019.105926. [33] 刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述 [J]. 力学进展, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004.LIU X H, HUANG X C, CHEN Y Z, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading [J]. Advances in Mechanics, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004. [34] WAYMEL R F, CHEW H B, LAMBROS J. Loading orientation effects on the strength anisotropy of additively-manufactured Ti-6Al-4V alloys under dynamic compression [J]. Experimental Mechanics, 2019, 59: 829–841. DOI: 10.1007/s11340-019-00506-2. [35] YUAN K B, GUO W G, LI P H, et al. Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling [J]. Mechanics of Materials, 2019, 135: 13–25. DOI: 10.1016/j.mechmat.2019.04.024. [36] ALKHATIB S E, XU S Q, LU G X, et al. Dynamic constitutive behavior of LPBFed metal alloys [J]. Journal of Materials Research and Technology, 2023. DOI: 10.1016/j.jmrt.2023.05.252. [37] STANCZAK M, RUSINEK A, BRONISZEWSKA P, et al. Influence of strain rate and temperature on the mechanical behaviour of additively manufactured AlSi10Mg alloy–experiment and the phenomenological constitutive modelling [J]. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2022, 70(4). DOI: 10.24425/bpasts.2022.141983. [38] 周琳. 金属材料新的动态本构模型 [D]. 合肥: 中国科学技术大学, 2019: 20. DOI: 10.27517/d.cnki.gzkju.2019.000016. [39] ZHANG F, LIU Z, WANG Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. Journal of Magnesium and Alloys, 2020, 8(1): 172–183. DOI: 10.1016/j.jma.2019.05.013. [40] TRIMBLE D, O'DONNELL G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1232–1250. DOI: 10.1016/S1003-6326(16)64194-8.