退火态增材制造AlSi10Mg合金在极端条件下的力学行为

张权 陈剑斌 史同亚 汪小锋 南小龙 王永刚

张权, 陈剑斌, 史同亚, 汪小锋, 南小龙, 王永刚. 退火态增材制造AlSi10Mg合金在极端条件下的力学行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0138
引用本文: 张权, 陈剑斌, 史同亚, 汪小锋, 南小龙, 王永刚. 退火态增材制造AlSi10Mg合金在极端条件下的力学行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0138
ZHANG Quan, CHEN Jianbin, SHI Tongya, WANG Xiaofeng, NAN Xiaolong, WANG Yonggang. Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0138
Citation: ZHANG Quan, CHEN Jianbin, SHI Tongya, WANG Xiaofeng, NAN Xiaolong, WANG Yonggang. Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0138

退火态增材制造AlSi10Mg合金在极端条件下的力学行为

doi: 10.11883/bzycj-2024-0138
基金项目: 冲击波物理与爆轰物理全国重点实验室稳定支持项目(JCKYS2023212005);宁波市科技创新2025重大专项(2021Z099,2023Z005,2023Z012);新金属材料国家重点实验室开放基金(2023-Z04)
详细信息
    作者简介:

    张 权(1999- ),男,硕士研究生,2111081030@nbu.edu.cn

    通讯作者:

    汪小锋(1985- ),男,博士,讲师,wangxiaofeng@nbu.edu.cn

  • 中图分类号: O347.1

Mechanical behavior of additively manufactured AlSi10Mg alloy with annealing state under extreme conditions

  • 摘要: 采用激光选区熔化技术制备AlSi10Mg合金并对其进行了去应力退火处理,通过光学显微镜、扫描电子显微镜和电子背散射衍射技术研究了合金的微观组织。为了解AlSi10Mg合金在宽应变率和宽温度下的耦合作用对力学行为的影响,通过配有环境温箱的万能试验机和分离式霍普金森压杆分析了其在极端条件下的力学行为。结果表明:AlSi10Mg合金具有精细的胞状-枝晶微观结构,主要包含α-Al相和Si相,经退火热处理后,微观组织由断续的、呈链状分布的共晶Si颗粒构成。AlSi10Mg合金在室温应变率为0.002~4 800 s−1时,呈现出应变率强化效应,且在不同的应变率范围内具有不同的敏感性;在173 K下具有更高的屈服强度和流动应力。当温度为173~243 K时,流动应力对温度不敏感;而温度为293~573 K时,温度敏感性显著提高,合金软化效应随着温度的升高而加剧。基于实验结果拟合了修正的J-C本构模型并进行了验证,该模型可较好地反映材料在高低温和不同应变率下的力学行为。
  • 图  1  AlSi10Mg粉末和粒径分布

    Figure  1.  AlSi10Mg powder and statistical analysis

    图  2  SHPB装置示意图及波形

    Figure  2.  Schematic diagram of SHPB and wave-propagation output

    图  3  退火态SLM AlSi10Mg合金xOy面和xOz面微观组织图像

    Figure  3.  Microstructure of xOy plane and xOz plane of SLM AlSi10Mg alloy after annealing treatment

    图  4  退火态SLM AlSi10Mg合金的EBSD谱

    Figure  4.  Annealed SLM AlSi10Mg alloy EBSD analysis

    图  5  室温及173 K、不同应变率下的真实应力-应变曲线

    Figure  5.  True stress-strain curves under different strain rates at room temperature and 173 K

    图  6  室温下ɛ=0.1时不同应变率与流动应力的关系

    Figure  6.  Relationship between different strain and flow stress at room temperature when ɛ=0.1

    图  7  0.002 s−1下不同温度的真实应力-应变曲线和温度与流动应力的关系

    Figure  7.  True stress-strain curves at different temperatures under 0.002 s−1 and relationship between temperature and flow stress

    图  8  拟合过程

    Figure  8.  Fitting process

    图  9  J-C本构模型计算数据与实验数据

    Figure  9.  Comparison between experimental data and calculated data from J-C constitutive model

    图  10  拟合过程

    Figure  10.  Fitting process

    图  11  J-C本构模型计算数据与实验数据

    Figure  11.  Comparison between experimental data and calculated data from J-C constitutive model

    图  12  本构模型预测值与实验值的相关性

    Figure  12.  Correlation between experimental values and predicted values from constitutive model

    图  13  室温及高温下本构模型的验证

    Figure  13.  Verification of constitutive models at room temperature and high temperature

    图  14  低温下本构模型的验证

    Figure  14.  Verification of constitutive models at low temperature

    表  1  AlSi10Mg粉末的化学组成

    Table  1.   Chemical composition of AlSi10Mg powder %

    AlSiMgFeMnCuTi
    88.9310.320.290.160.100.050.15
    下载: 导出CSV

    表  2  AlSi10Mg打印工艺参数

    Table  2.   Processing parameters of AlSi10Mg

    激光功率/
    W
    扫描速度/
    (m·s−1)
    扫描间距/
    mm
    层厚/
    mm
    旋转角度/
    (°)
    预热温度/
    K
    3001.20.20.0330423
    下载: 导出CSV

    表  3  修正后的J-C本构模型参数

    Table  3.   Modified J-C constitutive model parameters

    A/MPa B/MPa n C1 C2 k
    223 120 0.33 0.014 1.83×10−5 2.71
    下载: 导出CSV

    表  4  修正后的J-C本构模型温度参数

    Table  4.   Revised J-C constitutive model of temperature parameters

    T/K m
    373 1.026
    473 0.879
    573 0.590
    下载: 导出CSV

    表  5  低温J-C本构模型参数

    Table  5.   J-C constitutive model parameters at low temperature

    A/MPaB/MPanCm
    2341450.30.0142.91
    下载: 导出CSV
  • [1] XU W F, LUO Y X, ZHANG W, et al. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate [J]. Journal of Materials Science & Technology, 2018, 34(1): 173–184. DOI: 10.1016/j.jmst.2017.05.015.
    [2] TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Materials Science and Engineering: R, 2000, 29(3/4): 49–113. DOI: 10.1016/S0927-796X(00)00024-3.
    [3] NG C H, YAHAYA S N M, LAI C F, et al. Reviews on the forming process of heat treatable aluminium alloys [J]. International Journal of Integrated Engineering, 2018, 10(5): 74–79. DOI: 10.30880/ijie.2018.10.05.012.
    [4] ABOULKHAIR N T, SIMONELLI M, PATTY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Progress in Materials Science, 2019, 106: 100578. DOI: 10.1016/j.pmatsci.2019.100578.
    [5] KOTADIA H R, GIBBONS G, DAS A, et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties [J]. Additive Manufacturing, 2021, 46: 102155. DOI: 10.1016/j.addma.2021.102155.
    [6] LIMBASIYA N, JAIN A, SONI H, et al. A comprehensive review on the effect of process parameters and post-process treatments on microstructure and mechanical properties of selective laser melting of AlSi10Mg [J]. Journal of Materials Research and Technology, 2022, 22(1): 1141–1176. DOI: 10.1016/j.jmrt. 2022.09.092. DOI: 10.1016/j.jmrt.2022.09.092.
    [7] SERT E, HITZLER L, HAFENSTEIN S, et al. Tensile and compressive behaviour of additively manufactured AlSi10Mg samples [J]. Progress in Additive Manufacturing, 2020, 5(3): 305–313. DOI: 10.1007/s40964-020-00131-9.
    [8] LI P, KIM Y, BOBEL A C, et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg [J]. Acta Materialia, 2021, 220: 117346. DOI: 10.1016/j.actamat.2021.117346.
    [9] PONNUSAMY P, RAHMAN RASHID R A, MASOOD S H, et al. Mechanical properties of SLM-printed aluminium alloys: a review [J]. Materials, 2020, 13(19): 4301. DOI: 10.3390/ma13194301.
    [10] ZHAO L, SONG L B, MACIAS J G S, et al. Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg [J]. Additive Manufacturing, 2022, 56: 102914. DOI: 10.1016/j.addma.2022.102914.
    [11] PARK T H, BAEK M S, HYER H, et al. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process [J]. Materials Characterization, 2021, 176: 111113. DOI: 10.1016/j.matchar.2021.111113.
    [12] GIOVAGNOLI M, TOCCI M, FORTINI A, et al. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy [J]. Materials Science and Engineering: A, 2021, 802: 140671. DOI: 10.1016/j.msea.2020.140671.
    [13] KEMPF A, HILGENBERG K. Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines [J]. Materials Science and Engineering: A, 2021, 818: 141371. DOI: 10.1016/j.msea.2021.141371.
    [14] RABORI A S, FALLAH V. Room temperature strain rate sensitivity of as-built 3D printed AlSi10Mg by laser powder bed fusion [J]. Materials Letters, 2022, 320: 132395. DOI: 10.1016/j.matlet.2022.132395.
    [15] BAXTER C, CYR E, ODESHI A, et al. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading [J]. Materials Science and Engineering: A, 2018, 731: 296–308. DOI: 10.1016/j.msea.2018.06.040.
    [16] NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting [J]. Additive Manufacturing, 2018, 22: 823–833. DOI: 10.1016/j.addma.2018.06.001.
    [17] ALKHATIB S E, SERCOMBE T B. High strain-rate response of additively manufactured light metal alloys [J]. Materials & Design, 2022, 217: 110664. DOI: 10.1016/j.matdes.2022.110664.
    [18] ZARETSKY E, STERN A, FRAGE N. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting [J]. Materials Science and Engineering: A, 2017, 688: 364–370. DOI: 10.1016/j.msea.2017.02.004.
    [19] CAO Y, LIN X, WANG Q Z, et al. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. Journal of Materials Science & Technology, 2021, 62: 162–172. DOI: 10.1016/j.jmst.2020.04.066.
    [20] GHASHGHAY B R, ABEDI H R, SHABESTARI S G, et al. Comparatively evaluating the room and high temperature mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Journal of Materials Research and Technology, 2022, 21: 3570–3578. DOI: 10.1016/j.jmrt.2022.10.162.
    [21] SALANDARI-RABORI A, DIAK B J, FALLAH V. Dislocation-obstacle interaction evolution in rate dependent plasticity of AlSi10Mg as-built microstructure by laser powder bed fusion [J]. Materials Science and Engineering: A, 2022, 857: 144043. DOI: 10.1016/j.msea.2022.144043.
    [22] THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Materialia, 2013, 61(5): 1809–1819. DOI: 10.1016/j.actamat.2012.11.052.
    [23] 张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472.

    ZHANG W Q, ZHU H H, HU Z H, et al. Study on Selective Laser Melting of AlSi10Mg [J]. Acta Metallurgica Sinica, 2017, 53(8): 918–926. DOI: 10.11900/0412.1961.2016.00472.
    [24] ALGHAMDI F, SONG X, HADADZADEH A, et al. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties [J]. Materials Science and Engineering: A, 2020, 783: 139296. DOI: 10.1016/j.msea.2020.139296.
    [25] FATHI P, RAFIEAZAD M, DUAN X, et al. On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering [J]. Corrosion Science, 2019, 157: 126–145. DOI: 10.1016/j.corsci.2019.05.032.
    [26] WANG X F, SHI T Y, WANG H B, et al. Mechanical behavior and microstructure evolution of Al-Mg-Si-Cu alloy under tensile loading at different strain rates [J]. Materials Research Express, 2019, 6(6): 066548. DOI: 10.1088/2053-1591/ab08d7.
    [27] YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077.
    [28] ZHANG C S, WANG C X, GUO R, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation [J]. Journal of Alloys and Compounds, 2019, 773: 59–70. DOI: 10.1016/j.jallcom.2018.09.263.
    [29] 李娜, 李玉龙, 郭伟国. 3种铝合金材料动态性能及其温度相关性对比研究 [J]. 航空学报, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022.

    LI N, LI Y L, GUO W G. Comparison of mechanical properties and their temperature dependencies for three aluminium alloys under dynamic load [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 903–908. DOI: 10.3321/j.issn:1000-6893.2008.04.022.
    [30] 汪存显, 索涛, 李玉龙, 等. 不同温度和应变速率下超细晶铝的力学行为 [J]. 中国有色金属学报, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012.

    WANG C X, SUO T, LI Y L, et al. Mechanical behavior of ultra-grained aluminum at different temperatures and strain rates [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1200–1205. DOI: 10.19476/j.ysxb.1004.0609.2014.05.012.
    [31] LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation [J]. Materials and Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032.
    [32] LIU C M, LI C G, ZHANG Z, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Optics and Laser Technology, 2020, 123: 105926. DOI: 10.1016/j.optlastec.2019.105926.
    [33] 刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述 [J]. 力学进展, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004.

    LIU X H, HUANG X C, CHEN Y Z, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading [J]. Advances in Mechanics, 2007, 37(3): 361–374. DOI: 10.3321/j.issn:1000-0992.2007.03.004.
    [34] WAYMEL R F, CHEW H B, LAMBROS J. Loading orientation effects on the strength anisotropy of additively-manufactured Ti-6Al-4V alloys under dynamic compression [J]. Experimental Mechanics, 2019, 59: 829–841. DOI: 10.1007/s11340-019-00506-2.
    [35] YUAN K B, GUO W G, LI P H, et al. Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling [J]. Mechanics of Materials, 2019, 135: 13–25. DOI: 10.1016/j.mechmat.2019.04.024.
    [36] ALKHATIB S E, XU S Q, LU G X, et al. Dynamic constitutive behavior of LPBFed metal alloys [J]. Journal of Materials Research and Technology, 2023. DOI: 10.1016/j.jmrt.2023.05.252.
    [37] STANCZAK M, RUSINEK A, BRONISZEWSKA P, et al. Influence of strain rate and temperature on the mechanical behaviour of additively manufactured AlSi10Mg alloy–experiment and the phenomenological constitutive modelling [J]. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2022, 70(4). DOI: 10.24425/bpasts.2022.141983.
    [38] 周琳. 金属材料新的动态本构模型 [D]. 合肥: 中国科学技术大学, 2019: 20. DOI: 10.27517/d.cnki.gzkju.2019.000016.
    [39] ZHANG F, LIU Z, WANG Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. Journal of Magnesium and Alloys, 2020, 8(1): 172–183. DOI: 10.1016/j.jma.2019.05.013.
    [40] TRIMBLE D, O'DONNELL G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1232–1250. DOI: 10.1016/S1003-6326(16)64194-8.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  21
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-15
  • 修回日期:  2024-08-15
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回