基于爆炸损伤的头部有限元模型建立与验证

李涛 常利军 陈泰伟 刘浚源 肖淞铭 蔡志华

李涛, 常利军, 陈泰伟, 刘浚源, 肖淞铭, 蔡志华. 基于爆炸损伤的头部有限元模型建立与验证[J]. 爆炸与冲击, 2024, 44(12): 121424. doi: 10.11883/bzycj-2024-0173
引用本文: 李涛, 常利军, 陈泰伟, 刘浚源, 肖淞铭, 蔡志华. 基于爆炸损伤的头部有限元模型建立与验证[J]. 爆炸与冲击, 2024, 44(12): 121424. doi: 10.11883/bzycj-2024-0173
LI Tao, CHANG Lijun, CHEN Taiwei, LIU Junyuan, XIAO Songming, CAI Zhihua. Establishment and verification of a head finite element model based on explosion injury[J]. Explosion And Shock Waves, 2024, 44(12): 121424. doi: 10.11883/bzycj-2024-0173
Citation: LI Tao, CHANG Lijun, CHEN Taiwei, LIU Junyuan, XIAO Songming, CAI Zhihua. Establishment and verification of a head finite element model based on explosion injury[J]. Explosion And Shock Waves, 2024, 44(12): 121424. doi: 10.11883/bzycj-2024-0173

基于爆炸损伤的头部有限元模型建立与验证

doi: 10.11883/bzycj-2024-0173
基金项目: 国家自然科学基金(12372356,11972158);湖南省研究生科研创新项目(CX20221044)
详细信息
    作者简介:

    李 涛(2000- ),男,硕士研究生,litao200530@163.com

    通讯作者:

    蔡志华(1981- ),男,博士,教授,博士生导师,caizhihua003@163.com

  • 中图分类号: O389

Establishment and verification of a head finite element model based on explosion injury

  • 摘要: 为了更好地理解爆炸冲击波作用下头部的力学响应和损伤机制,利用计算机电子断层扫描与核磁共振医学图像获取了头部几何信息,开发了具有骨缝结构的精细化头部有限元模型。基于已有的激波管尸体实验,开展了正面、侧面与背面爆炸冲击数值模拟,通过对比颅内压-时间历程曲线与颅内压峰值,验证有限元模型的有效性。结果表明:在3种冲击方向下,颅内4个区域的压力峰值与文献实验仿真数据吻合较好;爆炸仿真中颅骨骨缝处有明显应力集中,骨缝线处头部有更大的损伤风险;同等爆炸冲击强度下,正面和背面冲击比侧面冲击对头部造成的损伤更严重。建立的头部模型可应用于爆炸载荷下的头部损伤研究,同时可探究骨缝对于头部生物力学响应的影响,对爆炸损伤研究具有重要意义。
  • 图  1  头部模型

    Figure  1.  Head models

    图  2  模型与实验示意图

    Figure  2.  Model and experimental diagram

    图  3  不同爆心距处压力随时间的变化

    Figure  3.  Variation of pressure with time at different distances away from explosion center

    图  4  不同强度冲击波正面冲击下额部颅内压对比

    Figure  4.  Comparison of frontal intracranial pressures under forward impact by different-strength shock waves

    图  5  不同强度冲击波正面冲击下脑室颅内压对比

    Figure  5.  Comparison of ventricle intracranial pressures under forward impact by different-strength shock waves

    图  6  不同强度冲击波正面冲击下顶部颅内压对比

    Figure  6.  Comparison of parietal intracranial pressures under forward impact by different-strength shock waves

    图  7  不同强度冲击波正面冲击下枕部颅内压对比

    Figure  7.  Comparison of occipital intracranial pressure under forward impact by different-strength shock waves

    图  8  颅骨最大应力云图

    Figure  8.  Maximum stress cloud map of skull

    图  9  不同强度不同方向冲击波冲击下的颅内压峰值对比

    Figure  9.  Comparison of intracranial pressure peak values under different intensity and direction impact wave shocks.

    表  1  颅骨组织材料参数[15-16]

    Table  1.   Skull tissue material parameters[15-16]

    结构 ρ/(g∙cm−3) E/GPa ν σy/MPa $ G $/GPa n Cowper-Symonds模型 εp/% 来源
    C P
    顶骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16]
    颞骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16]
    颧骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16]
    枕骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16]
    额骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16]
    蝶骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16]
    面骨 1.71 5.37 0.19 文献[15]
    下颌骨 2 11.5 0.3 145 1.15 0.1 2.5 7.0 文献[16]
    下载: 导出CSV

    表  2  脑组织材料参数[15, 18-19]

    Table  2.   Material parameters of brain tissue[15, 18-19]

    组织 ρ/(g∙cm−3) E/MPa ν $ {G}_{0} $/kPa $ {G}_{\infty } $/kPa $ \beta $/s−1 K/MPa 来源
    头皮 1.2 16.7 0.42 文献[18]
    脑脊液 1.04 100 20 100 1050 文献[19]
    硬脑膜 1.13 31.5 0.45 文献[15]
    软脑膜 1.13 31.5 0.45 文献[15]
    大脑 1.06 1.66 0.928 16.95 557 文献[18]
    小脑 1.06 1.16 0.928 16.95 557 文献[18]
    脑干 1.04 1.66 0.928 16.95 557 文献[18]
    下载: 导出CSV

    表  3  不同爆心距处超压峰值的对比

    Table  3.   Comparison of overpressure peaks at different distances away from explosion center

    d/m Δp+/kPa 相对误差/%
    数值模拟 经验公式
    0.75 307 298.7 2.78
    0.80 258 256.7 0.51
    0.85 223 223.4 0.18
    0.90 202 196.2 2.96
    0.95 190 173.8 9.32
    下载: 导出CSV

    表  4  不同强度冲击波正面冲击下颅内压峰值对比

    Table  4.   Comparison of peak intracranial pressures under forward impact by different-strength shock waves

    冲击波
    强度/kPa
    颅内压峰值/kPa 备注
    额部 脑室 顶部 枕部
    75 102 32 −30 实验cad4[17]
    162 46 53 实验cad5[17]
    132 39 cad4与cad5的平均值[17]
    103 55 55 −36 仿真[17]
    155 52 62 −59 数值模拟
    4.51% 5.77% 11.29% 38.98% 最小误差
    102 142 47 −40 实验cad4[17]
    220 63 83 实验cad5[17]
    181 55 cad4与cad5的平均值[17]
    168 91 95 −55 仿真[17]
    292 84 104 −112 数值模拟
    24.66% 8.33% 8.65% 50.89% 最小误差
    下载: 导出CSV

    表  5  不同强度冲击波侧面冲击下颅内压峰值对比

    Table  5.   Comparison of peak intracranial pressure under lateral impact by different-strength shock waves

    冲击波
    强度/kPa
    颅内压峰值/kPa备注
    额部脑室顶部枕部
    75202013实验cad4[17]
    383954实验cad5[17]
    2930cad4与cad5的平均值[17]
    69424944仿真[17]
    76407268数值模拟
    9.21%1.25%25%35.29%最小误差
    1022437实验cad4[17]
    944562实验cad5[17]
    34.5cad4与cad5的平均值[17]
    94505570仿真[17]
    118568868数值模拟
    20.34%10.71%37.5%2.94%最小误差
    下载: 导出CSV

    表  6  不同强度冲击波背面冲击下颅内压峰值对比

    Table  6.   Comparison of peak intracranial pressures under back impact by different-strength shock waves

    冲击波
    强度/kPa
    颅内压峰值/kPa 备注
    额部 脑室 顶部 枕部
    75 −55 19 53 实验cad4[17]
    −133 19 88 实验cad5[17]
    −94 19 cad4与cad5的平均值[17]
    −62 40 53 112 仿真[17]
    −106 42 97 104 数值模拟
    11.32% 4.76% 9.28% 7.69% 最小误差
    102 −74 22 90 实验cad4[17]
    −156 25 150 实验cad5[17]
    −115 23.5 cad4与cad5的平均值[17]
    −73 49 127 138 仿真[17]
    −135 45 143 149 数值模拟
    14.81% 8.89% 4.89% 7.38% 最小误差
    下载: 导出CSV
  • [1] CONNELLY C, MARTIN K, ELTERMAN J, et al. Early traumatic brain injury screen in 6594 inpatient combat casualties [J]. Injury, 2017, 48(1): 64–69. DOI: 10.1016/j.injury.2016.08.025.
    [2] GALARNEAU M R, WOODRUFF S I, DYE J L, et al. Traumatic brain injury during Operation Iraqi Freedom: findings from the United States Navy-Marine Corps Combat Trauma Registry [J]. Journal of Neurosurgery, 2008, 108(5): 950–957. DOI: 10.3171/JNS/2008/108/5/0950.
    [3] BHATTACHARJEE Y. Shell shock revisited: solving the puzzle of blast trauma [J]. Science, 2008, 319(5862): 406–408. DOI: 10.1126/science.319.5862.406.
    [4] YU X C, AZOR A, SHARP D J, et al. Mechanisms of tensile failure of cerebrospinal fluid in blast traumatic brain injury [J]. Extreme Mechanics Letters, 2020, 38: 100739. DOI: 10.1016/j.eml.2020.100739.
    [5] KULKARNI S G, GAO X L, HORNER S E, et al. Ballistic helmets: their design, materials, and performance against traumatic brain injury [J]. Composite Structures, 2013, 101: 313–331. DOI: 10.1016/j.compstruct.2013.02.014.
    [6] MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
    [7] GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
    [8] 康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究 [J]. 爆炸与冲击, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.

    KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
    [9] MAO H J, ZHANG L Y, JIANG B H, et al. Development of a finite element human head model partially validated with thirty five experimental cases [J]. Journal of Biomechanical Engineering, 2013, 135(11): 111002. DOI: 10.1115/1.4025101.
    [10] COTTON R T, PEARCE C W, YOUNG P G, et al. Development of a geometrically accurate and adaptable finite element head model for impact simulation: the Naval Research Laboratory-Simpleware Head Model [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19(1): 101–113. DOI: 10.1080/10255842.2014.994118.
    [11] GHAJARI M, HELLYER P J, SHARP D J. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology [J]. Brain, 2017, 140(2): 333–343. DOI: 10.1093/brain/aww317.
    [12] CARMO G P, DYMEK M, PTAK M, et al. Development, validation and a case study: the female finite element head model (FeFEHM) [J]. Computer Methods and Programs in Biomedicine, 2023, 231: 107430. DOI: 10.1016/j.cmpb.2023.107430.
    [13] 聂伟晓, 温垚珂, 董方栋, 等. 破片侵彻戴防弹头盔头部靶标钝击效应数值模拟 [J]. 兵工学报, 2022, 43(9): 2075–2085. DOI: 10.12382/bgxb.2022.0428.

    NIE W X, WEN Y K, DONG F D, et al. Numerical simulation of bludgeoning effect of fragments penetrating head target wearing bulletproof helmet [J]. Acta Armamentarii, 2022, 43(9): 2075–2085. DOI: 10.12382/bgxb.2022.0428.
    [14] 栗志杰, 由小川, 柳占立, 等. 基于三维头部数值模型的颅脑碰撞损伤机理研究 [J]. 工程力学, 2019, 36(5): 246-56. DOI: 10.6052/j.issn.1000-4750.2018.04.0254.

    LI Z J, YOU X C, LIU Z L, et al. Study on the mechanism of brain injury during head impact based on the three-dimensional numerical head model [J]. Engineering Mechanics, 2019, 36(5): 246-256. DOI: 10.6052/j.issn.1000-4750.2018.04.0254.
    [15] 张文超, 王舒, 梁增友, 等. 爆炸冲击波致颅脑冲击伤数值模拟研究 [J]. 北京理工大学学报, 2022, 42(9): 881-90. DOI: 10.15918/j.tbit1001-0645.2021.191.

    ZHANG W C, WANG S, LIANG Z Y, et al. Numerical simulation on traumatic brain injury induced by blast waves [J]. Transactions of Beijing institute of Technology, 2022, 42(9): 881-890. DOI: 10.15918/j.tbit1001-0645.2021.191.
    [16] 毛征宇, 李泽民, 牛文鑫, 等. 不同载荷作用下头部生物力学响应仿真分析 [J]. 医用生物力学, 2016, 31(6): 532–539,547. DOI: 10.3871/j.1004-7220.2016.06.532.

    MAO Z Y, LI Z M, NIU W X, et al. The simulation analysis on biomechanical responses of human head under different loading conditions [J]. Journal of Medical Biomechanics, 2016, 31(6): 532–539,547. DOI: 10.3871/j.1004-7220.2016.06.532.
    [17] SHARMA S. Biomechanical analysis of blast induced traumatic brain injury: a finite element modeling and validation study of blast effects on human brain [M]. Detroit: Wayne State University, 2011.
    [18] 李泽民. 子弹冲击防弹头盔动力学响应及防护性能仿真研究 [D]. 湘潭: 湖南科技大学, 2016.

    LI Z M. The bullet impact ballistic helmets simulation research on dynamic response and protective performance [D]. Xiangtan: Hunan University of Science and Technology, 2016.
    [19] PAVAN P G, NASIM M, BRASCO V, et al. Development of detailed finite element models for in silico analyses of brain impact dynamics [J]. Computer Methods and Programs in Biomedicine, 2022, 227: 107225. DOI: 10.1016/j.cmpb.2022.107225.
    [20] 王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.

    WANG Z, CHANG L J, HUANG X Y, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments [J]. Explosion and Shock Waves, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.
    [21] 黄星源. 爆炸冲击波作用下颅脑损伤力学机制与头盔防护性能研究 [D]. 湘潭: 湖南科技大学, 2023. DOI: 10.27738/d.cnki.ghnkd.2023.000012.

    HUANG X Y. Research on mechanical mechanism of craniocerebral injury and protective performance of helmet under the blast wave [D]. Xiangtan: Hunan University of Science and Technology, 2023. DOI: 10.27738/d.cnki.ghnkd.2023.000012.
    [22] 赵辉, 朱峰. 原发性颅脑冲击伤的生物力学机制 [J]. 创伤外科杂志, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.

    ZHAO H, ZHU F. The biomechanical mechanism of primary blast brain injury [J]. Journal of Traumatic Surgery, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.
    [23] 康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.

    KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.
    [24] SAUNDERS R N, TAN X G, QIDWAI S M, et al. Towards identification of correspondence rules to relate traumatic brain injury in different species [J]. Annals of Biomedical Engineering, 2019, 47(9): 2005–2018. DOI: 10.1007/s10439-018-02.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  40
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-10-23
  • 网络出版日期:  2024-11-05
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回