Establishment and verification of a head finite element model based on explosion injury
-
摘要: 为了更好地理解爆炸冲击波作用下头部的力学响应和损伤机制,利用计算机电子断层扫描与核磁共振医学图像获取了头部几何信息,开发了具有骨缝结构的精细化头部有限元模型。基于已有的激波管尸体实验,开展了正面、侧面与背面爆炸冲击数值模拟,通过对比颅内压-时间历程曲线与颅内压峰值,验证有限元模型的有效性。结果表明:在3种冲击方向下,颅内4个区域的压力峰值与文献实验仿真数据吻合较好;爆炸仿真中颅骨骨缝处有明显应力集中,骨缝线处头部有更大的损伤风险;同等爆炸冲击强度下,正面和背面冲击比侧面冲击对头部造成的损伤更严重。建立的头部模型可应用于爆炸载荷下的头部损伤研究,同时可探究骨缝对于头部生物力学响应的影响,对爆炸损伤研究具有重要意义。Abstract: In order to better understand the mechanical response and injury mechanism of the head under the action of explosive shock wave, the geometric information of the head was obtained through computerized tomography and magnetic resonance imaging, and a finite element model of the head with fine cranial bone and brain tissue was developed. Based on the existing blast tube cadaver experiments, forward, side, and backward explosive shock numerical simulations were conducted, and the cranial pressure-time history curves and peak cranial pressure were compared to validate the finite element model. The results show that the peak pressures of the four regions in the cranium under the three impact directions are in good agreement with the experimental and simulated data in the literature; there is obvious stress concentration at the suture line of the cranial bone in the simulated blast simulation; the head has a greater risk of injury at the suture line; and the front and back impacts cause more serious head injuries than the side impact under the same explosive shock intensity. The head model established can be used in the study of head injury under explosive loading, and the influence of suture on the biomechanical response of the head can be explored, which has important research significance for blast injury research.
-
Key words:
- explosion /
- finite element model /
- model verification /
- biomechanics /
- intracranial pressure
-
结构 ρ/(g∙cm−3) E/GPa ν σy/MPa $ G $/GPa n Cowper-Symonds模型 εp/% 来源 C P 顶骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16] 颞骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16] 颧骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16] 枕骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16] 额骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16] 蝶骨 2 11.5 0.3 90 1.15 0.1 2.5 7.0 0.02 文献[16] 面骨 1.71 5.37 0.19 − − − − − − 文献[15] 下颌骨 2 11.5 0.3 145 1.15 0.1 2.5 7.0 − 文献[16] 组织 ρ/(g∙cm−3) E/MPa ν $ {G}_{0} $/kPa $ {G}_{\infty } $/kPa $ \beta $/s−1 K/MPa 来源 头皮 1.2 16.7 0.42 − − − − 文献[18] 脑脊液 1.04 − − 100 20 100 1050 文献[19] 硬脑膜 1.13 31.5 0.45 − − − − 文献[15] 软脑膜 1.13 31.5 0.45 − − − − 文献[15] 大脑 1.06 1.66 0.928 16.95 557 文献[18] 小脑 1.06 1.16 0.928 16.95 557 文献[18] 脑干 1.04 1.66 0.928 16.95 557 文献[18] 表 3 不同爆心距处超压峰值的对比
Table 3. Comparison of overpressure peaks at different distances away from explosion center
d/m Δp+/kPa 相对误差/% 数值模拟 经验公式 0.75 307 298.7 2.78 0.80 258 256.7 0.51 0.85 223 223.4 0.18 0.90 202 196.2 2.96 0.95 190 173.8 9.32 表 4 不同强度冲击波正面冲击下颅内压峰值对比
Table 4. Comparison of peak intracranial pressures under forward impact by different-strength shock waves
冲击波
强度/kPa颅内压峰值/kPa 备注 额部 脑室 顶部 枕部 75 102 32 −30 实验cad4[17] 162 46 53 实验cad5[17] 132 39 cad4与cad5的平均值[17] 103 55 55 −36 仿真[17] 155 52 62 −59 数值模拟 4.51% 5.77% 11.29% 38.98% 最小误差 102 142 47 −40 实验cad4[17] 220 63 83 实验cad5[17] 181 55 cad4与cad5的平均值[17] 168 91 95 −55 仿真[17] 292 84 104 −112 数值模拟 24.66% 8.33% 8.65% 50.89% 最小误差 表 5 不同强度冲击波侧面冲击下颅内压峰值对比
Table 5. Comparison of peak intracranial pressure under lateral impact by different-strength shock waves
表 6 不同强度冲击波背面冲击下颅内压峰值对比
Table 6. Comparison of peak intracranial pressures under back impact by different-strength shock waves
冲击波
强度/kPa颅内压峰值/kPa 备注 额部 脑室 顶部 枕部 75 −55 19 53 实验cad4[17] −133 19 88 实验cad5[17] −94 19 cad4与cad5的平均值[17] −62 40 53 112 仿真[17] −106 42 97 104 数值模拟 11.32% 4.76% 9.28% 7.69% 最小误差 102 −74 22 90 实验cad4[17] −156 25 150 实验cad5[17] −115 23.5 cad4与cad5的平均值[17] −73 49 127 138 仿真[17] −135 45 143 149 数值模拟 14.81% 8.89% 4.89% 7.38% 最小误差 -
[1] CONNELLY C, MARTIN K, ELTERMAN J, et al. Early traumatic brain injury screen in 6594 inpatient combat casualties [J]. Injury, 2017, 48(1): 64–69. DOI: 10.1016/j.injury.2016.08.025. [2] GALARNEAU M R, WOODRUFF S I, DYE J L, et al. Traumatic brain injury during Operation Iraqi Freedom: findings from the United States Navy-Marine Corps Combat Trauma Registry [J]. Journal of Neurosurgery, 2008, 108(5): 950–957. DOI: 10.3171/JNS/2008/108/5/0950. [3] BHATTACHARJEE Y. Shell shock revisited: solving the puzzle of blast trauma [J]. Science, 2008, 319(5862): 406–408. DOI: 10.1126/science.319.5862.406. [4] YU X C, AZOR A, SHARP D J, et al. Mechanisms of tensile failure of cerebrospinal fluid in blast traumatic brain injury [J]. Extreme Mechanics Letters, 2020, 38: 100739. DOI: 10.1016/j.eml.2020.100739. [5] KULKARNI S G, GAO X L, HORNER S E, et al. Ballistic helmets: their design, materials, and performance against traumatic brain injury [J]. Composite Structures, 2013, 101: 313–331. DOI: 10.1016/j.compstruct.2013.02.014. [6] MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702. [7] GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224. [8] 康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究 [J]. 爆炸与冲击, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395. [9] MAO H J, ZHANG L Y, JIANG B H, et al. Development of a finite element human head model partially validated with thirty five experimental cases [J]. Journal of Biomechanical Engineering, 2013, 135(11): 111002. DOI: 10.1115/1.4025101. [10] COTTON R T, PEARCE C W, YOUNG P G, et al. Development of a geometrically accurate and adaptable finite element head model for impact simulation: the Naval Research Laboratory-Simpleware Head Model [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19(1): 101–113. DOI: 10.1080/10255842.2014.994118. [11] GHAJARI M, HELLYER P J, SHARP D J. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology [J]. Brain, 2017, 140(2): 333–343. DOI: 10.1093/brain/aww317. [12] CARMO G P, DYMEK M, PTAK M, et al. Development, validation and a case study: the female finite element head model (FeFEHM) [J]. Computer Methods and Programs in Biomedicine, 2023, 231: 107430. DOI: 10.1016/j.cmpb.2023.107430. [13] 聂伟晓, 温垚珂, 董方栋, 等. 破片侵彻戴防弹头盔头部靶标钝击效应数值模拟 [J]. 兵工学报, 2022, 43(9): 2075–2085. DOI: 10.12382/bgxb.2022.0428.NIE W X, WEN Y K, DONG F D, et al. Numerical simulation of bludgeoning effect of fragments penetrating head target wearing bulletproof helmet [J]. Acta Armamentarii, 2022, 43(9): 2075–2085. DOI: 10.12382/bgxb.2022.0428. [14] 栗志杰, 由小川, 柳占立, 等. 基于三维头部数值模型的颅脑碰撞损伤机理研究 [J]. 工程力学, 2019, 36(5): 246-56. DOI: 10.6052/j.issn.1000-4750.2018.04.0254.LI Z J, YOU X C, LIU Z L, et al. Study on the mechanism of brain injury during head impact based on the three-dimensional numerical head model [J]. Engineering Mechanics, 2019, 36(5): 246-256. DOI: 10.6052/j.issn.1000-4750.2018.04.0254. [15] 张文超, 王舒, 梁增友, 等. 爆炸冲击波致颅脑冲击伤数值模拟研究 [J]. 北京理工大学学报, 2022, 42(9): 881-90. DOI: 10.15918/j.tbit1001-0645.2021.191.ZHANG W C, WANG S, LIANG Z Y, et al. Numerical simulation on traumatic brain injury induced by blast waves [J]. Transactions of Beijing institute of Technology, 2022, 42(9): 881-890. DOI: 10.15918/j.tbit1001-0645.2021.191. [16] 毛征宇, 李泽民, 牛文鑫, 等. 不同载荷作用下头部生物力学响应仿真分析 [J]. 医用生物力学, 2016, 31(6): 532–539,547. DOI: 10.3871/j.1004-7220.2016.06.532.MAO Z Y, LI Z M, NIU W X, et al. The simulation analysis on biomechanical responses of human head under different loading conditions [J]. Journal of Medical Biomechanics, 2016, 31(6): 532–539,547. DOI: 10.3871/j.1004-7220.2016.06.532. [17] SHARMA S. Biomechanical analysis of blast induced traumatic brain injury: a finite element modeling and validation study of blast effects on human brain [M]. Detroit: Wayne State University, 2011. [18] 李泽民. 子弹冲击防弹头盔动力学响应及防护性能仿真研究 [D]. 湘潭: 湖南科技大学, 2016.LI Z M. The bullet impact ballistic helmets simulation research on dynamic response and protective performance [D]. Xiangtan: Hunan University of Science and Technology, 2016. [19] PAVAN P G, NASIM M, BRASCO V, et al. Development of detailed finite element models for in silico analyses of brain impact dynamics [J]. Computer Methods and Programs in Biomedicine, 2022, 227: 107225. DOI: 10.1016/j.cmpb.2022.107225. [20] 王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.WANG Z, CHANG L J, HUANG X Y, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments [J]. Explosion and Shock Waves, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515. [21] 黄星源. 爆炸冲击波作用下颅脑损伤力学机制与头盔防护性能研究 [D]. 湘潭: 湖南科技大学, 2023. DOI: 10.27738/d.cnki.ghnkd.2023.000012.HUANG X Y. Research on mechanical mechanism of craniocerebral injury and protective performance of helmet under the blast wave [D]. Xiangtan: Hunan University of Science and Technology, 2023. DOI: 10.27738/d.cnki.ghnkd.2023.000012. [22] 赵辉, 朱峰. 原发性颅脑冲击伤的生物力学机制 [J]. 创伤外科杂志, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.ZHAO H, ZHU F. The biomechanical mechanism of primary blast brain injury [J]. Journal of Traumatic Surgery, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017. [23] 康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521. [24] SAUNDERS R N, TAN X G, QIDWAI S M, et al. Towards identification of correspondence rules to relate traumatic brain injury in different species [J]. Annals of Biomedical Engineering, 2019, 47(9): 2005–2018. DOI: 10.1007/s10439-018-02.