航空动力锂离子电池热失控行为与气体燃爆危险性研究进展

杨娟 牛江昊 魏陟珣 胡佳宁 包防卫 张青松

杨娟, 牛江昊, 魏陟珣, 胡佳宁, 包防卫, 张青松. 航空动力锂离子电池热失控行为与气体燃爆危险性研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0175
引用本文: 杨娟, 牛江昊, 魏陟珣, 胡佳宁, 包防卫, 张青松. 航空动力锂离子电池热失控行为与气体燃爆危险性研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0175
YANG Juan, NIU Jianghao, WEI Zhixun, HU Jianing, BAO Fangwei, ZHANG Qingsong. A review of thermal runaway impacts and gas explosion of aviation propulsion lithium-ion batteries[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0175
Citation: YANG Juan, NIU Jianghao, WEI Zhixun, HU Jianing, BAO Fangwei, ZHANG Qingsong. A review of thermal runaway impacts and gas explosion of aviation propulsion lithium-ion batteries[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0175

航空动力锂离子电池热失控行为与气体燃爆危险性研究进展

doi: 10.11883/bzycj-2024-0175
基金项目: 国家自然科学基金(U2033204);天津市城市空中交通系统技术与装备重点实验室开放基金(TJKL-UAM-202302);中央高校基本科研业务费(3122023025)
详细信息
    作者简介:

    杨 娟(1983- ),女,硕士,副教授,haishi_yj11@126.com

    通讯作者:

    张青松(1977- ),男,博士研究生,nkzqsong@126.com

  • 中图分类号: O384

A review of thermal runaway impacts and gas explosion of aviation propulsion lithium-ion batteries

  • 摘要: 动力锂离子电池安全是制约电动航空器运行与适航取证的技术瓶颈问题,影响全球电动航空的发展。由锂离子电池热失控引发的燃烧、爆炸等失效事件将造成机毁人亡的灾难性后果。本文旨在为相关研究人员介绍锂离子电池热失控爆炸特性的研究现状,从锂离子电池热失控燃爆行为、热失控气体爆炸极限以及热失控气体爆炸危险性评估三方面进行阐述:在锂离子电池热失控燃爆行为方面,介绍了锂离子电池热失控发展过程,分析了热失控冲击特征参数测定方法,总结了热射流演变机制及射流火焰的模拟仿真与实验方法;针对热失控气体的爆炸极限,对比国内外气体爆炸极限测试标准,总结了热失控气体爆炸极限理论计算方法,并对原位检测爆炸极限的创新方法进行了介绍;在热失控气体爆炸危险性评估方面,介绍了老化锂离子电池危险性评估方法,以及爆炸危险性参数指标。提出未来的研究将侧重于先进诊断技术、增强电解质稳定性、多尺度建模、先进抑制技术以及建立标准化测试流程和技术法规等领域。
  • 图  1  100% SOC电池全尺寸燃烧测试中燃烧现象的不同时间戳对应的视频截图(侧面和正面)[10]

    Figure  1.  Video screenshots corresponding to different time stamps of combustion phenomena in the full-scale combustion test of 100% SOC batteries (side and front)[10]

    图  2  锂离子电池热失控发展过程[11]

    Figure  2.  Development of thermal runaway in lithium-ion batteries[11]

    图  3  冲击压力测试装置[13]

    Figure  3.  Impact pressure test device[13]

    图  4  强烈喷射阶段内冲击压力随温度的变化[13]

    Figure  4.  Impact pressure versus the temperature in the intense ejection stage[13]

    图  5  强烈喷射阶段内冲击压力变化率随温度的变化曲线[13]

    Figure  5.  Change rate of impact pressure versus the temperature in the intense ejection stage [13]

    图  6  热失控气体不同方位冲击压力随时间的变化[14]

    Figure  6.  Variation of impact pressure with time of different orientations of thermal runaway gas [14]

    图  7  锂离子电池热失控典型射流行为[15]

    Figure  7.  Typical ejection behaviors of lithium-ion battery thermal runaway [15]

    图  8  400 W热功率下100% SOC锂离子电池热失控过程红外图像[17]

    Figure  8.  Infrared images of thermal runaway process of 100% SOC LIB at 400 W heating power[17]

    图  9  锂离子电池热失控射流火焰的发展过程及火焰高度[18]

    Figure  9.  Development process and flame height of thermal runaway ejecta flame of lithium-ion battery[18]

    图  10  热失控气体爆炸极限与加热功率和加热温度的关系[30]

    Figure  10.  Thermal runaway gas explosion limit with heating power and temperature change relationship[30]

    图  11  爆炸极限原位测定装置及测试结果[33]

    Figure  11.  In-situ explosion limit determination device and test results[33]

    图  12  不同老化程度电池CT扫描图[48]

    Figure  12.  CT scans of batteries with different degrees of ageing[48]

    图  13  老化锂离子电池热失控气体爆炸极限、爆炸压力和温度随循环圈数的变化[48]

    Figure  13.  Variation of thermal runaway gas explosion limits, explosion pressure and temperature of aging lithium-ion batteries with cycle times[48]

    表  1  冲击压力测试设置[14]

    Table  1.   Impact pressure test settings[14]

    测试编号 电池封装结构 电池数量 压力传感器位置
    A6×635节电池
    +1个加热棒
    传感器1(右侧):水平方向距中心30 cm,垂直方向距电池封装包上端7.5 cm(R-30);
    传感器2(右侧):水平方向距中心40 cm,垂直方向距电池封装包上端10 cm(R-40);
    传感器3(背面):与传感器1相同(B-30)
    B10×1099节电池
    +1个加热棒
    传感器1(右侧):水平方向距中心40 cm,垂直方向距电池盒上端10 cm(R-40)
    传感器2(背面):水平方向距中心50 cm,垂直方向距电池盒上端12.5 cm(R-50)
    下载: 导出CSV

    表  2  可燃气体爆炸极限测试方法[19]

    Table  2.   Test methods for explosion limit of flammable gases[19]

    国别 标准体系 应用范围 测定装置 点火装置 判定标准
    中国 GB/T12474-
    2008[20]
    常压下空气中爆炸极限 管式装置:硬质玻璃反应管,管内径60 mm±5 mm,管长1400 mm±
    50 mm,壁厚≥2 mm
    电火花引燃,放电电极距离底部≥100 mm,间距为3~4 mm 目测火焰:火焰非常迅速传播至管顶;一定的速度缓慢传播
    中国 GB/T 21844-
    2008[21]
    常温至150 ℃和常压下易燃性浓度极限,燃烧上限UFL及下限浓度LFL 5 L/12 L长颈玻璃瓶 中心点火:10 mm长熔丝;或电火花电极间隙6~10 mm:或高压电弧6 mm间距,30 mA等;化学点火引燃 目测观察火焰传播:到达瓶壁或至少离器壁13 mm运动沿瓶壁传播≥90°
    GB/T27862-
    011[22]
    空气中可燃范围/爆炸范围:可燃上限、可燃下限 厚玻璃圆筒,内径≥50 mm,高度≥300 mm 火花发生器,电极间距5 mm,10 J/次 目测火焰是否通过反应管传播,火焰分离并传播,传播至少10 cm为易燃。氢气可采用温度测量探针
    美国 ASTM E 681[23] 常压高温(室温至150 ℃) 球式装置:5 L球形玻璃容器,内径222 mm 中心电火花引燃,15 kV,持续0.4 s,约4 J 目测不低于0.2 m
    ASTM E 918[24] 高温高压(室温至200 ℃,初始压力不大于1.38 MPa) 金属容器,容积V≥1L,内径D≥76 mm 115 V电熔丝 初始压力提升量不低于7%
    欧盟 EN 1839[25] 常压,室温至200 ℃ 管式装置:柱形玻璃管,长度L≥300 mm,内径D80±2 mm;
    球形装置:球形或圆柱形体积V≥5 L,长径比1~1.5
    管式:高压电火花引燃,持续0.2 s,约2 J球形:10~20 J熔丝,间距5 mm,截面2.5~
    7 mm2
    管式测定:目测火焰传播0.1 m
    球式测定:初始压力提升5%
    prEN 17624[26] 高温高压(室温至400 ℃,常压至10.0 MPa) 球形装置,1 L、3 L、5 L和10 L 感应火花、表面间隙火花或爆炸桥丝 不大于0.2 MPa时为5%初始压力,0.2 MPa以上时为2%初始压力,均不含点火源的压力提升量
    下载: 导出CSV

    表  3  不同实验条件下CO2、CO和H2的生成体积[31]

    Table  3.   production volume of CO2, CO and H2 under different experimental conditions[31]

    环境压力/kPaSOC/%气体生成体积/L
    CO2COH2
    30250.0700.04
    1000.581.030.72
    1012500.180.14
    1001.261.510.93
    下载: 导出CSV
  • [1] 黄俊, 杨凤田. 新能源电动飞机发展与挑战 [J]. 航空学报, 2016, 37(1): 57–68. DOI: 10.7527/S1000-6893.2015.0274.

    HUANG J, YANG F T. Development and challenges of electric aircraft with new energies [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57–68. DOI: 10.7527/S1000-6893.2015.0274.
    [2] XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications [J]. Energy & Environmental Materials, 2023, 6(5): e12450. DOI: 10.1002/eem2.12450.
    [3] FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries [J]. Joule, 2020, 4(4): 743–770. DOI: 10.1016/j.joule.2020.02.010.
    [4] 国家市场监督管理总局, 国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB 38031-2020 [S]. 北京: 中国标准出版社, 2020.

    State Administration for Market Regulation, Standardization Administration. Electric vehicles traction battery safety requirements: GB 38031-2020 [S]. Beijing: Standards Press of China, 2020.
    [5] FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review [J]. Energy Storage Materials, 2018, 10: 246–267. DOI: 10.1016/j.ensm.2017.05.013.
    [6] 杨娟, 胡佳宁, 佟佳成, 等. 航空锂电池热失控高温喷射冲击实验研究 [J]. 航空学报, 2025, 46(14): 430965. DOI: 10.7527/S1000-6893.2024.3096.

    YANG J, HU J N, TONG J C, et al. Experimental study on high-temperature jet impact induced by thermal runaway in aviation lithium-ion batteries [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 430965. DOI: 10.7527/S1000-6893.2024.3096.
    [7] ZHAO W Y, GUO Z X, MA Z C, et al. Coupled effect of low temperature and electrolyte immersion on the tensile properties of separators in lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2023, 15(35): 41783–41792. DOI: 10.1021/acsami.3c05450.
    [8] GUO Z X, YANG S G, ZHAO W Y, et al. Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries [J]. Journal of Energy Chemistry, 2023, 78: 497–506. DOI: 10.1016/j.jechem.2022.12.013.
    [9] PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test [J]. Journal of Power Sources, 2015, 285: 80–89. DOI: 10.1016/j.jpowsour.2015.03.035.
    [10] PING P, KONG D P, ZHANG J Q, et al. Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating [J]. Journal of Power Sources, 2018, 398: 55–66. DOI: 10.1016/j.jpowsour.2018.07.044.
    [11] 张青松, 郭超超, 秦帅星. 锂离子电池燃爆特征及空运安全性研究 [J]. 中国安全科学学报, 2016, 26(2): 50–55. DOI: 10.16265/j.cnki.issn1003-3033.2016.02.009.

    ZHANG Q S, GUO C C, QIN S X. Study on lithium-ion batteries explosive characteristics and aviation transportation safety [J]. China Safety Science Journal, 2016, 26(2): 50–55. DOI: 10.16265/j.cnki.issn1003-3033.2016.02.009.
    [12] YANG J, LIU W, ZHAO H, et al. Experimental investigation of lithium-ion batteries thermal runaway propagation consequences under different triggering modes [J]. Aerospace, 2024, 11(6): 438. DOI: 10.3390/aerospace11060438.
    [13] CHEN S C, WANG Z R, YAN W, et al. Investigation of impact pressure during thermal runaway of lithium ion battery in a semi-closed space [J]. Applied Thermal Engineering, 2020, 175: 115429. DOI: 10.1016/j.applthermaleng.2020.115429.
    [14] CHEN M Y, OUYANG D X, LIU J H, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package [J]. Applied Thermal Engineering, 2019, 157: 113750. DOI: 10.1016/j.applthermaleng.2019.113750.
    [15] ZOU K Y, CHEN X, DING Z W, et al. Jet behavior of prismatic lithium-ion batteries during thermal runaway [J]. Applied Thermal Engineering, 2020, 179: 115745. DOI: 10.1016/j.applthermaleng.2020.115745.
    [16] MAO B B, ZHAO C P, CHEN H D, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery [J]. Applied Energy, 2021, 281: 116054. DOI: 10.1016/j.apenergy.2020.116054.
    [17] CHEN S C, WANG Z R, LIU J H. A semi-quantitative analysis of infrared characteristics of thermal runaway ejection behaviour of lithium-ion battery [J]. Journal of Energy Storage, 2023, 71: 108166. DOI: 10.1016/j.est.2023.108166.
    [18] 张青松, 翟祺悦, 赵子恒. 受限空间锂离子电池热解气体燃烧释能研究 [J]. 消防科学与技术, 2021, 40(12): 1711–1714. DOI: 10.3969/j.issn.1009-0029.2021.12.002.

    ZHANG Q S, ZHAI Q Y, ZHAO Z H. Study of energy release from pyrolysis gas combustion of Li-ion battery in confined space [J]. Fire Science and Technology, 2021, 40(12): 1711–1714. DOI: 10.3969/j.issn.1009-0029.2021.12.002.
    [19] 任常兴, 蒋乐章, 王玥, 等. 高温高压条件下可燃气体爆炸极限测定标准对比研究 [J]. 标准科学, 2023(2): 73–77,100. DOI: 10.3969/j.issn.1674-5698.2023.02.012.

    REN C X, JIAGN Y Z, WANG Y, et al. Comparative study on determination standards for the explosion limits of the combustible gas at high temperature and pressure [J]. Standard Science, 2023(2): 73–77,100. DOI: 10.3969/j.issn.1674-5698.2023.02.012.
    [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 空气中可燃气体爆炸极限测定方法: GB/T 12474-2008 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Method of test for explosion limits of combustible gases in air: GB/T 12474-2008 [S]. Beijing: Standards Press of China, 2009.
    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化合物(蒸气和气体)易燃性浓度限值的标准试验方法: GB/T 21844-2008 [S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard test method for concentration limits of flammability of chemicals (vapors and gases): GB/T 21844-2008 [S]. Beijing: Standards Press of China, 2008.
    [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化学品危险性分类试验方法 气体和气体混合物燃烧潜力和氧化能力: GB/T 27862-2011 [S]. 北京: 中国标准出版社, 2012.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Testing method for classification of chemical hazards: fire potential and oxidizing ability of gases and gas mixtures: GB/T 27862-2011 [S]. Beijing: Standards Press of China, 2012.
    [23] ASTM International. Standard test method for concentration limits of flammability of chemicals (vapors and gases): ASTM E681-2009 [S]. West Conshohocken: ASTM International, 2009.
    [24] CEN. Determination of explosion limits of gases and vapours: EN 1839 [S]. Brussels: CEN, 2012.
    [25] ASTM International. Standard practice for determining limits of flammability of chemicals at elevated temperature and pressure: ASTM E918-83 [S]. West Conshohocken: ASTM International, 2011.
    [26] CEN. Determination of explosion limits of gases and vapours at elevated pressures, elevated temperatures or with oxidizers other than air: prEN 17624 [S]. Brussels: CEN, 2021.
    [27] 褚英杰, 李旭朝, 陈自强, 等. 安全壳压力试验中多元混合可燃性气体的爆炸极限研究 [J]. 核科学与工程, 2023, 43(1): 151–158. DOI: 10.3969/j.issn.0258-0918.2023.01.023.

    CHU Y J, LI X C, CHEN Z Q, et al. The study of the flammability limits of the multicomponent gas in the containment pressure test [J]. Nuclear Science and Engineering, 2023, 43(1): 151–158. DOI: 10.3969/j.issn.0258-0918.2023.01.023.
    [28] BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas [J]. Journal of Power Sources, 2020, 446: 227257. DOI: 10.1016/j.jpowsour.2019.227257.
    [29] BOUNACEUR R, GLAUDE P A, SIRJEAN B, et al. Prediction of flammability limits of gas mixtures containing inert gases under variable temperature and pressure conditions [C]//ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Charlotte: ASME, 2017. DOI: 10.1115/GT2017-64172.
    [30] CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992. DOI: 10.1016/j.jlp.2019.103992.
    [31] 张伟, 郝朝龙, 刘添添, 等. 航空压力环境对锂离子电池热解气体爆炸极限影响 [J]. 中国安全生产科学技术, 2022, 18(11): 155–162. DOI: 10.11731/j.issn.1673-193x.2022.11.022.

    ZHANG W, HAO C L, LIU T T, et al. Influence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries [J]. Journal of Safety Science and Technology, 2022, 18(11): 155–162. DOI: 10.11731/j.issn.1673-193x.2022.11.022.
    [32] ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states [J]. Journal of Energy Storage, 2022, 45: 103759. DOI: 10.1016/j.est.2021.103759.
    [33] ZHANG Q S, NIU J H, YANG J, et al. In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway [J]. Journal of Energy Storage, 2022, 56: 106146. DOI: 10.1016/j.est.2022.106146.
    [34] 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响 [J]. 储能科学与技术, 2023, 12(7): 2263–2270. DOI: 10.19799/j.cnki.2095-4239.2023.0192.

    ZHANG Q S, BAO F W, NIU J H. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263–2270. DOI: 10.19799/j.cnki.2095-4239.2023.0192.
    [35] ZHANG Y J, WANG H W, LI W F, et al. Quantitative analysis of eruption process of abused prismatic Ni-rich automotive batteries based on in-chamber pressure [J]. Journal of Energy Storage, 2020, 31: 101617. DOI: 10.1016/j.est.2020.101617.
    [36] WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: a comparison study [J]. Journal of Energy Chemistry, 2021, 55: 484–498. DOI: 10.1016/j.jechem.2020.07.028.
    [37] KIM S W, PARK S G, LEE E J. Assessment of the explosion risk during lithium-ion battery fires [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104851. DOI: 10.1016/j.jlp.2022.104851.
    [38] SHAN T X, WANG Z P, ZHU X Q, et al. Explosion behavior investigation and safety assessment of large-format lithium-ion pouch cells [J]. Journal of Energy Chemistry, 2022, 72: 241–257. DOI: 10.1016/j.jechem.2022.04.018.
    [39] SOMANDEPALLI V, MARR K, HORN Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries [J]. SAE International Journal of Alternative Powertrains, 2014, 3(1): 98–104. DOI: 10.4271/2014-01-1857.
    [40] LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: a case of NCA and LFP lithium-ion batteries during external heating abuse [J]. Journal of Energy Storage, 2019, 24: 100775. DOI: 10.1016/j.est.2019.100775.
    [41] LI W F, RAO S, XIAO Y, et al. Fire boundaries of lithium-ion cell eruption gases caused by thermal runaway [J]. iScience, 2021, 24(5): 102401. DOI: 10.1016/j.isci.2021.102401.
    [42] ESSL C, GOLUBKOV A W, GASSER E, et al. Comprehensive Hazard Analysis of Failing Automotive Lithium-Ion Batteries in Overtemperature Experiments [J]. Batteries, 2020, 6: 30. DOI: 10.3390/batteries6020030.
    [43] GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. [J] RSC Advance. 2014, 4: 3633–3642. DOI: 10.1039/c3ra45748f.
    [44] GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge. [J] RSC Advances. 2015, 5: 57171–57186. DOI: 10.1039/c5ra05897j.
    [45] LAMMER M, KÖNIGSEDER A, HACKER V. Holistic methodology for characterisation of the thermally induced failure of commercially available 18650 lithium ion cells. [J] RSC Advances. 2017, 7: 24425–24429. DOI: 10.1039/c7ra02635h.
    [46] ZHANG Y, WANG H, LI W, et al. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries. [J] Journal of Energy Storage. 2019, 26: 100991. DOI: 10.1016/j.est.2019.100991.
    [47] 张青松, 包防卫, 牛江昊. 三元锂电池热失控产气爆炸风险评估研究 [J/OL]. 电源学报, 2023-12-20 [2024-03-18]. http://kns.cnki.net/kcms/detail/12.1420.tm.20231219.1347.012.html.

    ZHANG Q S, BAO F W, NIU J H. Study on risk assessment of thermal runaway gas explosion of ternary lithium battery [J/OL]. Journal of Power Supply, 2023-12-20[2024-03-18]. http://kns.cnki.net/kcms/detail/12.1420.tm.20231219.1347.012.html.
    [48] 杨娟, 牛江昊, 张青松. 循环老化锂离子电池热失控气体原位爆炸极限实验分析 [J]. 航空学报, 2023, 44(23): 428529. DOI: 10.7527/S1000-6893.2023.28529.

    YANG J, NIU J H, ZHANG Q S. In-situ explosion limit of thermal runaway gas explosion in cyclic aging lithium-ion batteries: experimental analysis [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 428529. DOI: 10.7527/S1000-6893.2023.28529.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  36
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-10-16
  • 网络出版日期:  2024-10-18

目录

    /

    返回文章
    返回