冲击载荷下圆柱形锂离子电池的动态响应预测

黄子轩 张新春 顾丽蓉 安利强 饶理想 张玮琦

黄子轩, 张新春, 顾丽蓉, 安利强, 饶理想, 张玮琦. 冲击载荷下圆柱形锂离子电池的动态响应预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0188
引用本文: 黄子轩, 张新春, 顾丽蓉, 安利强, 饶理想, 张玮琦. 冲击载荷下圆柱形锂离子电池的动态响应预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0188
HUANG Zixuan, ZHANG Xinchun, GU Lirong, AN Liqiang, RAO Lixiang, ZHANG Weiqi. Dynamic response prediction of cylindrical lithium-ion batteries under impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0188
Citation: HUANG Zixuan, ZHANG Xinchun, GU Lirong, AN Liqiang, RAO Lixiang, ZHANG Weiqi. Dynamic response prediction of cylindrical lithium-ion batteries under impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0188

冲击载荷下圆柱形锂离子电池的动态响应预测

doi: 10.11883/bzycj-2024-0188
基金项目: 国家自然科学基金(12304116);河北省自然科学基金(A2020502005)
详细信息
    作者简介:

    黄子轩(1999- ),男,博士研究生,zxhuang@ncepu.edu.cn

    通讯作者:

    张新春(1980- ),男,博士,副教授,xczhang@ncepu.edu.cn

  • 中图分类号: O347; U469.72

Dynamic response prediction of cylindrical lithium-ion batteries under impact loading

  • 摘要: 为提高径向冲击载荷下圆柱形锂离子电池的安全性,基于膜力因子法研究了大变形下电池的动态响应特性。将电池首先简化为包括内芯和外壳的夹层梁结构,根据抗拉屈服强度建立了电池横截面的塑性屈服准则和膜力因子,进一步将膜力因子引入运动方程实现了大变形下动态响应的求解。此外,基于拉压试验测定了电池构件的力学性能,进一步建立了电池整体有限元模型。研究表明:电池位移响应和速度响应的理论结果和有限元结果具有一致性;冲击载荷下电池初始速度越高,轴力效应对动态响应的影响越大;电池最大挠度随初始速度近似线性增加,且实际的响应时间具有饱和性;电池最大挠度随内芯和外壳屈服强度之比的减小而增大,电池外壳越薄,屈服强度的影响越显著;电池最大挠度随外壳厚度的增大而减小,屈服强度比越大,外壳厚度的影响越显著。
  • 图  1  冲击载荷下圆柱形锂离子电池的力学模型

    Figure  1.  Mechanical model of cylindrical lithium-ion battery under impact loading

    图  2  不同塑性中面下电池截面的应力分布

    Figure  2.  Stress distribution along the cross-section of the battery with the plastic neutral surface at various locations

    图  3  电池的结构

    Figure  3.  Structure of the battery

    图  4  电池外壳的拉伸和内芯的压缩试验

    Figure  4.  Tension test of the casing and compression test of the inner core for the battery

    图  5  电池内芯和外壳的应力应变曲线

    Figure  5.  Stress-strain curves for core and casing of the battery

    图  6  电池夹层梁模型的轴力-弯矩屈服面

    Figure  6.  Axial force-moment yield surface for the sandwich beam model of the battery

    图  7  有限元建模及模拟结果

    Figure  7.  Finite element modeling and simulated results

    图  8  理论计算结果和有限元模拟结果的对比

    Figure  8.  Comparison of theoretical and finite element results

    图  9  初始速度对电池动态响应的影响

    Figure  9.  Effect of initial velocity on the dynamic responses of the battery

    图  10  电池质量m和参数k1k2对无量纲最大挠度的影响

    Figure  10.  Effects of mass and parameters k1 and k2 of the battery on dimensionless maximum deflection

    表  1  有限元模型材料参数

    Table  1.   Material parameters of the finite element model

    构件 厚度/mm 密度/(kg·m−3) 杨氏模量 剪切模量 屈服强度/MPa 泊松比
    内芯 8.75 2 090 Er = 0.5 GPa
    Ea = 1.5 GPa[22]
    Gr = 0.217 GPa[21]
    Ga = 0.3 GPa[21]
    μr = 0.15[16]
    μra = 0.1[21]
    μar = 0.3[21]
    外壳 0.25 7 850 160 GPa 235 0.3[7]
    下载: 导出CSV
  • [1] 董思捷, 张新春, 汪玉林, 等. 不同挤压载荷下圆柱形锂离子电池的失效机理试验研究 [J]. 中国机械工程, 2022, 33(8): 915–920,951. DOI: 10.3969/j.issn.1004-132X.2022.08.005.

    DONG S J, ZHANG X C, WANG Y L, et al. Experimental study of failure mechanism of cylindrical lithium-ion batteries under different compression loadings [J]. China Mechanical Engineering, 2022, 33(8): 915–920,951. DOI: 10.3969/j.issn.1004-132X.2022.08.005.
    [2] XU J, LIU B H, HU D Y. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries [J]. Scientific Reports, 2016, 6: 21829. DOI: 10.1038/srep21829.
    [3] WANG W W, YANG S, LIN C. Clay-like mechanical properties for the jellyroll of cylindrical lithium-ion cells [J]. Applied Energy, 2017, 196: 249–258. DOI: 10.1016/j.apenergy.2017.01.062.
    [4] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions [J]. Journal of Power Sources, 2012, 220: 360–372. DOI: 10.1016/j.jpowsour.2012.07.057.
    [5] GILAKI M, AVDEEV I. Impact modeling of cylindrical lithium-ion battery cells: a heterogeneous approach [J]. Journal of Power Sources, 2016, 328: 443–451. DOI: 10.1016/j.jpowsour.2016.08.034.
    [6] ZHANG H J, ZHOU M Z, Hu L L, et al. Mechanism of the dynamic behaviors and failure analysis of lithium-ion batteries under crushing based on stress wave theory [J]. Engineering Failure Analysis, 2020, 108: 104290. DOI: 10.1016/j.engfailanal.2019.104290.
    [7] ZHANG X C, ZHANG T, LIU N N, et al. Dynamic crushing behaviors and failure of cylindrical lithium-ion batteries subjected to impact loading [J]. Engineering Failure Analysis, 2023, 154: 107653. DOI: 10.1016/j.engfailanal.2023.107653.
    [8] ZHU J E, LUO H L, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading [J]. International Journal of Impact Engineering, 2019, 131: 78–84. DOI: 10.1016/j.ijimpeng.2019.05.003.
    [9] WANG L B, LI J P, CHEN J Y, et al. Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation [J]. Applied Energy, 2023, 351: 121790. DOI: 10.1016/j.apenergy.2023.121790.
    [10] ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [11] 陈发良, 余同希. 正多边形板的塑性动力响应: 小挠度分析和大挠度分析 [J]. 爆炸与冲击, 1991, 11(2): 106–116. DOI: 10.11883/1001-1455(1991)02-0106-11.

    CHEN F L, YU T X. Dynamic plastic response of regular polygonal plates [J]. Explosion and Shock Waves, 1991, 11(2): 106–116. DOI: 10.11883/1001-1455(1991)02-0106-11.
    [12] CHEN F L, YU T X. Analysis of large deflection dynamic response of rigid-plastic beams [J]. Journal of Engineering Mechanics, 1993, 119(6): 1293–1301. DOI: 10.1061/(ASCE)0733-9399(1993)119:6(1293).
    [13] QIN Q H, WANG T J. A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading [J]. European Journal of Mechanics-A/Solids, 2009, 28(5): 1014–1025. DOI: 10.1016/j.euromechsol.2009.04.002.
    [14] XIANG C P, QIN Q H, WANG M S, et al. Low-velocity impact response of sandwich beams with a metal foam core: Experimental and theoretical investigations [J]. International Journal of Impact Engineering, 2019, 130: 172–183. DOI: 10.1016/j.ijimpeng.2019.04.014.
    [15] 谌勇, 唐平, 汪玉, 等. 刚塑性圆板受水下爆炸载荷时的动力响应 [J]. 爆炸与冲击, 2005, 25(1): 90–96. DOI: 10.11883/1001-1455(2005)01-0090-07.

    CHEN Y, TANG P, WANG Y, et al. Dynamic response analysis of rigid-plastic circular plate under underwater blast loading [J]. Explosion and Shock Waves, 2005, 25(1): 90–96. DOI: 10.11883/1001-1455(2005)01-0090-07.
    [16] 张新春, 王俊瑜, 汪玉林, 等. 基于膜力因子法的方形锂离子电池冲击动力响应研究 [J]. 应用数学和力学, 2022, 43(11): 1203–1213. DOI: 10.21656/1000-0887.430289.

    ZHANG X C, WANG J Y, WANG Y L, et al. Impact responses of prismatic lithium-ion battery based on the membrane factor method [J]. Applied Mathematics and Mechanics, 2022, 43(11): 1203–1213. DOI: 10.21656/1000-0887.430289.
    [17] ZHANG X C, HUANG Z X, WANG Y L, et al. Dynamic responses of cylindrical lithium-ion battery under localized impact loading [J]. Mechanics of Advanced Materials and Structures, 2024. DOI: 10.1080/15376494.2024.2359648.
    [18] YU T X, STRONGE W J. Large deflections of a rigid-plastic beam-on-foundation from impact [J]. International Journal of Impact Engineering, 1990, 9(1): 115–126. DOI: 10.1016/0734-743X(90)90025-Q.
    [19] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. DOI: 10.1016/j.jpowsour.2014.05.078.
    [20] JIANG W Z, LIU Y, WANG B. Dynamic responses of metal sandwich beams under high velocity impact considering time inhomogeneity of core deformation [J]. International Journal of Impact Engineering, 2017, 110: 311–323. DOI: 10.1016/j.ijimpeng.2017.05.010.
    [21] XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–189. DOI: 10.1016/j.apenergy.2016.03.108.
    [22] WANG L B, CHEN J Y, LI J P, et al. A novel anisotropic model for multi-stage failure threshold of lithium-ion battery subjected to impact loading [J]. International Journal of Mechanical Sciences, 2022, 236: 107757. DOI: 10.1016/j.ijmecsci.2022.107757.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  25
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2024-09-09
  • 网络出版日期:  2024-09-12

目录

    /

    返回文章
    返回