• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸冲击波作用下聚脲材料对肺冲击伤防护作用的数值模拟研究

刘迪 陈菁 张安强 赵晓东 张双博 康建毅 李朝龙 曾灵

张庆明. “超高速碰撞”专题出版前言[J]. 爆炸与冲击, 2021, 41(2): 021400.
引用本文: 刘迪, 陈菁, 张安强, 赵晓东, 张双博, 康建毅, 李朝龙, 曾灵. 爆炸冲击波作用下聚脲材料对肺冲击伤防护作用的数值模拟研究[J]. 爆炸与冲击, 2024, 44(12): 121423. doi: 10.11883/bzycj-2024-0205
ZHANG Qingming. Introduction to special issue on hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021400.
Citation: LIU Di, CHEN Jing, ZHANG Anqiang, ZHAO Xiaodong, ZHANG Shuangbo, KANG Jianyi, LI Chaolong, ZENG Ling. Numerical simulation study on the protective effects of polyurea materials against lung blast injuries under blast wave loading[J]. Explosion And Shock Waves, 2024, 44(12): 121423. doi: 10.11883/bzycj-2024-0205

爆炸冲击波作用下聚脲材料对肺冲击伤防护作用的数值模拟研究

doi: 10.11883/bzycj-2024-0205
基金项目: 国家重点研发计划(2020-JCJQ-ZD-254-05);后勤科研重点项目(BLJ23J006);陆军特色医学中心人才创新能力培养计划(ZXYZZKY03)
详细信息
    作者简介:

    刘 迪(1993- ),女,硕士,助理研究员,heidi678@tmmu.edu.cn

    通讯作者:

    陈 菁(1968- ),女,博士,研究员,chenj811@tmmu.edu.cn

  • 中图分类号: O389

Numerical simulation study on the protective effects of polyurea materials against lung blast injuries under blast wave loading

  • 摘要: 肺冲击伤是爆炸后第一级冲击伤最常见的死因,进行有效防护是减轻伤情、提升救治效能的最优举措。聚脲材料作为躯体防具的研究尚在起步阶段,本研究通过有限元数值模拟探讨了冲击波作用下聚脲材料对肺脏的防护效应及其对冲击波的衰减特性。首先利用LS-DYNA软件模拟冲击波对穿戴防护材料的山羊胸部的直接损伤过程,然后通过实爆测压数据及肺大体伤情进行有效性验证,最后利用该冲击波防护后效应有限元计算模型完成聚脲材料对人员肺冲击伤防护效应的评估。结果表明:右肺朝向爆心时,冲击波肺损伤应力主要集中在右肺下叶,防护模型肺脏整体应力较小,肺所受负压所致肺过牵效应减弱;聚脲材料能够有效衰减到达皮肤和肺脏表面的超压峰值约58.8%,降低胸骨最大线速度约22.4%,且随冲击波压强的增大,衰减能力增强,从而有效降低肺冲击伤的发生率和严重程度。建立的人员防护效应计算机仿真评估模型为新型防护材料用于人员肺冲击伤的防护效能评估、防护后损伤程度预测提供了方法,具有重要的军事和社会意义。
  • 超高速碰撞是指这样一类碰撞:碰撞所产生的冲击压强远远大于(弹靶)材料的强度。在超高速碰撞的最初阶段,材料的性态类似于可压缩流体,遵从流体力学定律。小天体对地球的撞击、空间碎片对航天器的撞击、动能武器对目标的撞击是典型的超高速碰撞现象。

    超高速碰撞研究的兴起与航天工程、武器工程、地球及行星科学等领域的需求密不可分。20世纪50年代中期,由于航天安全和反弹道导弹技术的需要,世界主要军事和科技大国大力开展超高速碰撞研究。几十年来,在超高速加载与试验技术、高压状态方程、厚靶成坑、材料破碎与结构解体、碎片云膨胀规律、空间碎片防护结构、超高速碰撞数值计算等方面研究取得了较大进展。进入21世纪以来,超高速碰撞研究与力学、航空宇航科学与技术、兵器科学与技术、材料科学与工程、物理、天文学等相关学科领域进一步交叉融合,不仅在航天器空间碎片防护、反弹道导弹、装甲与反装甲、核反应堆安全防护设计、惯性约束聚变等工程领域发挥了重要作用,而且也促进了极端条件下材料的性质和状态方程、生命起源、陨石坑形成、高分辨诊断技术、多物理场多尺度数值模拟技术等基础研究的快速发展。

    为促进我国在超高速碰撞领域最新研究成果的交流,探讨其发展趋势,推动该领域及相关学科的进一步发展,《爆炸与冲击》编辑部于2019年策划了“超高速碰撞”专题。专题征集了中国工程物理研究院、中国空间技术研究院、中国空气动力研究与发展中心、西北核技术研究院、哈尔滨工业大学、北京理工大学等单位提交的9篇论文,从不同侧面反映了近几年我国相关单位在该领域取得的最新成果。该专题在编辑、出版过程中得到了作者、审稿专家、编委和《爆炸与冲击》编辑部的大力支持,在此表示衷心的感谢。

    北京理工大学教授、博士生导师 张庆明
    《爆炸与冲击》副主编
      

  • 图  1  山羊胸部有限元模型

    Figure  1.  Finite element models of the goat thorax

    图  2  压力源正对胸部右侧的冲击波加载模型

    Figure  2.  The blast wave loading model with a pressure source facing the right side of the thorax

    图  3  实爆试验传感器测压示意图及测压曲线

    Figure  3.  Diagrams of sensor detection in live explosion test and measured pressure curves

    图  4  500 kPa工况下山羊有限元模型模拟肺最大应力云图与旷场实爆试验4 m处山羊肺大体损伤情况对比

    Figure  4.  Comparison of lung stress cloud diagram of goat finite element model under 500 kPa condition and gross lung injury in field explosion test at 4 m

    图  5  人员穿戴防护材料的冲击波加载有限元模型

    Figure  5.  Finite element models of personnel wearing protective material for blast wave loading

    图  6  冲击波加载压力场分布

    Figure  6.  Pressure field distribution of blast wave loading

    图  7  100 kPa工况下无/有防护肺脏内应力的传播

    Figure  7.  Stress propagation in the lung without and with protection under the 100 kPa condition

    图  8  右肺表面的压力-时间历程

    Figure  8.  Pressure-time history near the surface of the right lung

    图  9  皮下5 cm处肺矢状面压力-时间历程

    Figure  9.  Pressure-time histories in the sagittal plane 5 cm below the skin of the right lung

    图  10  右肺内的应力-时间历程

    Figure  10.  Stress-time histories inside the right lunge

    图  11  聚脲材料对冲击波的衰减规律

    Figure  11.  Attenuation pattern of blast waves by polyurea material

    图  12  5种工况下胸骨最大线速度响应曲线

    Figure  12.  Maximum linear velocity response curves of sternum under five conditions

    图  13  防护前后胸骨最大线速度的对应关系

    Figure  13.  Corresponding relationship of the maximum linear velocities of the sternum before and after protection

    表  1  山羊胸部各组织的材料特性

    Table  1.   Material properties of various tissues in the goat thorax

    组织 ρ/(kg∙m−3) K/MPa G0/kPa G/kPa β/s−1 E/MPa μ
    胸骨 1250 9500 0.25
    软骨 1070 2.5 0.40
    肋骨 1080 9500 0.20
    脊柱 1330 355 0.26
    心脏 1000 744 67 65 0.1
    肺脏 600 744 67 65 0.1
    皮肤组织 1300 4000 200 195 0.1
    下载: 导出CSV

    表  2  防护材料的材料特性参数

    Table  2.   Material properties of protective materials

    材料模型 ρ/(kg∙m−3) μ E/MPa C/s−1 D
    MAT24 1070 0.465 150 98.16 4.52
    下载: 导出CSV

    表  3  不同工况下人员无/有防护肺脏力学响应分布

    Table  3.   Distribution of intrapulmonary mechanical responses in personnel without and with protection under different conditions

    ps/kPa肺表面超压峰值/kPa肺矢状面超压峰值/kPa肺内峰值应力/kPa
    100117.23/25.55(78.2%)43.30/15.27(64.7%)2.35/1.21(48.5%)
    300155.86/47.81(69.3%)66.58/39.17(41.2%)10.66/5.05(52.6%)
    400259.60/107.20(58.7%)113.24/53.30(52.9%)14.30/6.15(57.0%)
    500395.45/144.60(63.4%)145.19/69.93(51.8%)18.38/7.54(59.0%)
    700631.04/178.16(71.8%)217.42/107.71(50.5%)23.50/12.19(48.1%)
     注:括号内为有防护相对无防护的衰减百分比。
    下载: 导出CSV

    表  4  不同工况防护材料前后及无防护模型皮肤处超压峰值对比

    Table  4.   Comparison of overpressure peaks at the skin with and without protective material under different conditions

    ps/kPa 无防护皮肤超压峰值/kPa 有防护材料前超压峰值/kPa 防护材料后超压峰值/kPa
    100 128.21(51.5%) 106.69(41.8%) 62.14
    300 249.35(49.9%) 217.13(42.5%) 124.91
    400 357.10(58.7%) 310.41(52.4%) 147.63
    500 598.10(68.2%) 465.39(59.1%) 190.42
    700 776.05(65.5%) 724.68(63.1%) 267.61
     注:括号内为材料后超压峰值的衰减百分比。
    下载: 导出CSV
  • [1] GTD search results [DB/OL]. (2022)[2024-06-20]. https://www.start.umd.edu/gtd/.
    [2] SCOTT T E, JOHNSTON A M, KEENE D D, et al. Primary blast lung injury: the UK military experience [J]. Military Medicine, 2020, 185(5/6): 568–572. DOI: 10.1093/milmed/usz453.
    [3] 中华医学会创伤学分会. 天津港“8.12”大爆炸伤员伤情特点与救治反思 [J]. 中华创伤杂志, 2015, 31(9): 810–813. DOI: 10.3760/cma.j.issn.1001-8050.2015.09.014.

    Chinese Medical Association Trauma Branch. Reflection on the characteristics and treatment of the wounded in 8.12 Tinjin Port Explosion, China [J]. Chinese Journal of Traumatology, 2015, 31(9): 810–813. DOI: 10.3760/cma.j.issn.1001-8050.2015.09.014.
    [4] ABOUDARA M, MAHONEY P F, HICKS B, et al. Primary blast lung injury at a NATO Role 3 hospital [J]. Journal of the Royal Army Medical Corps, 2014, 160(2): 161–166. DOI: 10.1136/jramc-2013-000216.
    [5] 蒋建新, 曾灵. 肺爆炸冲击伤机制与防护研究进展 [J]. 陆军军医大学学报, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.

    JIANG J X, ZENG L. Advance of protection and mechanism of lung blast injury [J]. Journal of Army Medical University, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.
    [6] 郭国吉, 陈彩英, 王向明, 等. 聚脲弹性体防护材料的研究进展 [J]. 中国表面工程, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.

    GUO G J, CHEN C Y, WANG X M, et al. Research progress of polyurea elastomer protective materials [J]. China Surface Engineering, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.
    [7] DUDA M, PACH J, LESIUK G. Influence of polyurea composite coating on selected mechanical properties of AISI 304 steel [J]. Materials, 2019, 12(19): E3137. DOI: 10.3390/ma12193137.
    [8] 王建民, 陈菁, 康建毅, 等. 爆炸性武器生物杀伤效应评估方法及应用 [J]. 现代应用物理, 2019, 10(4): 041001. DOI: 10.12061/j.issn.2095-6223.2019.041001.

    WANG J M, CHEN J, KANG J Y, et al. Method for evaluation biological damage effect of explosive weapons and its application [J]. Modern Applied Physics, 2019, 10(4): 041001. DOI: 10.12061/j.issn.2095-6223.2019.041001.
    [9] BOUAMOUL A. Numerical study of primary blast injury to human and sheep lung induced by simple and complex blast loadings: DRDC Valcartier TR 2008-245 [R]. Canada: DTIC, 2009.
    [10] 薛钰琦, 张华才, 文大林, 等. 模拟实爆条件下新型聚脲类材料对肺冲击伤的防护效应研究 [J]. 第三军医大学学报, 2020, 42(19): 1875–1881. DOI: 10.16016/j.1000-5404.202003159.

    XUE Y Q, ZHANG H C, WEN D L, et al. Bioprotective effects of novel polyurea materials on lung blast injury after simulated open-field explosion [J]. Joural of Third Military Medical University, 2020, 42(19): 1875–1881. DOI: 10.16016/j.1000-5404.202003159.
    [11] 王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.

    WANG Z, CHANG LJ, HUANG XY, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and framents [J]. Explosion and Shock Waves, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.
    [12] CARUSO K S, HIJUELOS J C, PECK G E, et al. Development of synthetic cortical bone for ballistic and blast testing [J]. Journal of Advanced Materials, 2006, 38(3): 27–36.
    [13] WANG H C. Development of a side impact finite element human thoracic model [D]. Detroit: Wayne State University, 1995.
    [14] DUCK F A. Physical properties of tissue [M]. London: Academic Press, 1990: 137-165.
    [15] SARAF H, RAMESH K T, LENNON A M, et al. Mechanical properties of soft human tissues under dynamic loading [J]. Journal of Biomechanics, 2007, 40(9): 1960–1967. DOI: 10.1016/j.jbiomech.2006.09.021.
    [16] JIANG Y X, ZHANG B Y, WEI J S, et al. Study on the dynamic response of polyurea coated steel tank subjected to blast loadings [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104234. DOI: 10.1016/j.jlp.2020.104234.
    [17] 周杰, 陶钢, 潘保青, 等. 爆炸冲击波对人体胸部创伤机理的有限元方法研究 [J]. 爆炸与冲击, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06.

    ZHOU J, TAO G, PAN B Q, et al. Mechanism of blast trauma to human thorax: a finite element study [J]. Explosion and Shock Waves, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06.
    [18] 中国数字化可视人体数据库 [DB/OL]. (2014)[2024-06-20]. http://cvh.bmicc.cn/cvh/cn/.

    Chinese digitized visible human database [DB/OL]. (2014)[2024-06-20]. http://cvh.bmicc.cn/cvh/cn/.
    [19] 王正国. 原发冲击伤的发生机制 [J]. 解放军医学杂志, 1995, 20(4): 315–317.

    WANG Z G. Mechanism of primary blast injury [J]. Medical Journal of Chinese PLA, 1995, 20(4): 315–317.
    [20] 张均奎, 王正国, 冷华光, 等. 冲击波负压与肺损伤 [J]. 爆炸与冲击, 1994, 14(1): 84–87. DOI: 10.11883/1001-1455(1994)01-0084-4.

    ZHANG J K, WANG Z G, LENG H G, et al. Underpressure of blast wave and lung injury [J]. Explosion and Shock Waves, 1994, 14(1): 84–87. DOI: 10.11883/1001-1455(1994)01-0084-4.
    [21] WHITE C S. Biomedical parameters, project harbor study: DASA-1335 [R]. Washington: Defense Atomic Support Agency, 1963.
    [22] AXELSSON H, YELVERTON J T. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1996, 40(s3): 31–37. DOI: 10.1097/00005373-199603001-00006.
  • 加载中
推荐阅读
反射爆炸应力波作用下动静裂纹的贯通机理
周星源 等, 爆炸与冲击, 2025
泡沫铜对密闭管道内合成气爆炸特性影响的实验研究
郑凯 等, 爆炸与冲击, 2024
多级柱面炸药内爆磁通量压缩技术研究
谷卓伟 等, 爆炸与冲击, 2024
考虑岩体破坏分区的岩石爆破爆炸荷载历程研究
孙鹏昌 等, 爆炸与冲击, 2024
热塑性纤维金属层合板舱内爆炸响应数值模拟
周沪 等, 高压物理学报, 2022
两次稳态冲击下含氦泡铜微射流与损伤演化的微观模拟研究
王欣欣 等, 高压物理学报, 2025
爆轰驱动下45钢半球壳膨胀断裂破片回收研究
张世文 等, 高压物理学报, 2023
Impact of antibiotic pollution on the bacterial population within surface water with special focus on mountain rivers
Kulik, Klaudia et al., WATER, 2023
Experimental and numerical investigation of mechanical behavior of segmental joint of shield tunneling strengthened by prestressed cfrp plates
STRUCTURES
Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
SIMULATION MODELLING PRACTICE AND THEORY
Powered by
图(13) / 表(4)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  149
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-09-09
  • 网络出版日期:  2024-09-12
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回