Numerical simulation study on the protective effects of polyurea materials against lung blast injuries under blast wave loading
-
摘要: 肺冲击伤是爆炸后第一级冲击伤最常见死因,进行有效防护是减轻伤情、提升救治效能的最优举措。聚脲材料作为躯体防具的研究尚在起步阶段,本研究通过有限元数值模拟探讨了冲击波作用下聚脲材料对肺脏的防护效应及其对冲击波的衰减特性。首先利用LS-DYNA软件模拟冲击波对穿戴防护材料的山羊胸部的直接损伤过程,然后通过实爆测压数据及肺大体伤情进行有效性验证,最后利用该冲击波防护后效应有限元计算模型完成聚脲材料对人员肺冲击伤防护效应的评估。结果表明:右肺朝向爆心时,冲击波肺损伤应力主要集中在右肺下叶,防护模型肺脏整体应力较小,肺所受负压所致肺过牵效应减弱;聚脲材料能够有效衰减到达皮肤和肺脏表面的超压峰值约58.8%(p < 0.05),降低胸骨最大线速度约22.4%,且随冲击波压强增大衰减能力增强,从而有效降低肺冲击伤的发生率和严重程度。建立的人员防护效应计算机仿真评估模型为新型防护材料用于人员肺冲击伤的防护效能评估、防护后损伤程度预测提供了方法,具有重要的军事和社会意义。Abstract: Lung blast injury is the most common cause of death from primary blast injuries, and effective protection is crucial for mitigating injuries and improving treatment outcomes. Research on polyurea materials as body armor is still in its early stages. This study conducted numerical simulations to investigate the mechanical response of lungs protected by polyurea under blast wave conditions and the attenuation characteristics of polyurea against blast waves. LS-DYNA was used to simulate the direct damage process of blast waves on the thorax of goats wearing protective materials, and the validity was verified through field pressure data and gross lung injury observations. Finally, the finite element model of blast wave protection effects was used to evaluate the protective effects of polyurea materials on human lung blast injuries. The results showed that when the right lung faces the blast center, the stress from lung injuries is mainly concentrated in the lower lobe of the right lung. The overall stress in the protected lung model is lower, and the lung overtraction effect caused by the negative pressure is weakened. Polyurea materials can effectively attenuate the peak overpressure on the skin and lung surface by approximately 58.8%, reduce the maximum velocity of the sternum by about 22.4%, and enhance attenuation capacity with increasing blast wave pressure, thereby effectively reducing the incidence and severity of lung blast injuries. The established computer simulation evaluation model for personnel protection effects provides a method for evaluating the protective efficacy of new protective materials against lung blast injuries and predicting post-protection injury severity, with significant military and social implications.
-
Key words:
- blast wave /
- lung blast injury /
- polyurea protection /
- peak overpressure
-
表 1 山羊胸部各组织的材料特性
Table 1. Material properties of various tissues in the goat thorax
组织 ρ/(kg∙m−3) K/MPa G0/kPa G∞/kPa β/s−1 E/MPa υ 胸骨 1250 9500 0.25 软骨 1070 2.5 0.4 肋骨 1080 9500 0.2 脊柱 1330 355 0.26 心脏 1000 744 67 65 0.1 肺脏 600 744 67 65 0.1 皮肤组织 1300 4000 200 195 0.1 表 2 防护材料的材料特性参数
Table 2. Material properties of protective materials
材料模型 ρ/(kg∙m−3) υ E/MPa C/s−1 D MAT24 1070 0.465 150 98.16 4.52 表 3 不同工况下人员无/有防护肺脏学响应分布
Table 3. Distribution of intrapulmonary mechanical responses in personnel without and with protection
ps/kPa 肺表面超压峰值/kPa 肺矢状面超压峰值/kPa 肺峰值应力/kPa 100 117.23/25.55(78.2%) 43.30/15.27(64.7%) 2.35/1.21(48.5%) 300 155.86/47.81(69.3%) 66.58/39.17(41.2%) 10.66/5.05(52.6%) 400 259.60/107.20(58.7%) 113.24/53.30(52.9%) 14.30/6.15(57.0%) 500 395.45/144.60(63.4%) 145.19/69.93(51.8%) 18.38/7.54(59.0%) 700 631.04/178.16(71.8%) 217.42/107.71(50.5%) 23.50/12.19(48.1%) 注:括号内为有防护相对无防护的衰减百分比。 表 4 不同工况防护材料前后及无防护模型皮肤处超压峰值对比
Table 4. Comparison of peak overpressure at skin for five conditions with and without protective material
ps/kPa 无防护皮肤超压峰值/kPa 有防护材料前超压峰值/kPa 防护材料后超压峰值/kPa 100 128.21(51.5%) 106.69(41.8%) 62.14 300 249.35(49.9%) 217.13(42.5%) 124.91 400 357.10(58.7%) 310.41(52.4%) 147.63 500 598.10(68.2%) 465.39(59.1%) 190.42 700 776.05(65.5%) 724.68(63.1%) 267.61 注:括号内为材料后超压峰值的衰减百分比。 -
[1] GTD search results [DB/OL]. (2022)[2024-06-20]. https://www.start.umd.edu/gtd/. [2] SCOTT T E, JOHNSTON A M, KEENE D D, et al. Primary blast lung injury: the UK military experience [J]. Military Medicine, 2020, 185(5/6): 568–572. DOI: 10.1093/milmed/usz453. [3] 中华医学会创伤学分会. 天津港“8.12”大爆炸伤员伤情特点与救治反思 [J]. 中华创伤杂志, 2015, 31(9): 810–813. DOI: 10.3760/cma.j.issn.1001-8050.2015.09.014.Chinese Medical Association Trauma Branch. Reflection on the characteristics and treatment of the wounded in 8.12 Tinjin Port Explosion, China [J]. Chinese Journal of Traumatology, 2015, 31(9): 810–813. DOI: 10.3760/cma.j.issn.1001-8050.2015.09.014. [4] ABOUDARA M, MAHONEY P F, HICKS B, et al. Primary blast lung injury at a NATO Role 3 hospital [J]. Journal of the Royal Army Medical Corps, 2014, 160(2): 161–166. DOI: 10.1136/jramc-2013-000216. [5] 蒋建新, 曾灵. 肺爆炸冲击伤机制与防护研究进展 [J]. 陆军军医大学学报, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.JIANG JX, ZENG L. Advance of protection and mechanism of lung blast injury [J]. Journal of Army Medical University, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179. [6] 郭国吉, 陈彩英, 王向明, 等. 聚脲弹性体防护材料的研究进展 [J]. 中国表面工程, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.GUO GJ, CHEN CY, WANG XM, et al. Research progress of polyurea elastomer protective materials [J]. China Surface Engineering, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001. [7] DUDA M, PACH J, LESIUK G. Influence of polyurea composite coating on selected mechanical properties of AISI 304 steel [J]. Materials, 2019, 12(19): E3137. DOI: 10.3390/ma12193137. [8] 王建民, 陈菁, 康建毅, 等. 爆炸性武器生物杀伤效应评估方法及应用 [J]. 现代应用物理, 2019, 10(4): 041001–5. DOI: 10.12061/j.issn.2095-6223.2019.041001.WANG J M, CHEN J, KANG J Y, et al. Method for evaluation biological damage effect of explosive weapons and its application [J]. Modern Applied Physics, 2019, 10(4): 041001–5. DOI: 10.12061/j.issn.2095-6223.2019.041001. [9] BOUAMOUL A. Numerical study of primary blast injury to human and sheep lung induced by simple and complex blast loadings: DRDC Valcartier TR 2008-245 [R]. Canada: DTIC, 2009. [10] 薛钰琦, 张华才, 文大林, 等. 模拟实爆条件下新型聚脲类材料对肺冲击伤的防护效应研究 [J]. 第三军医大学学报, 2020, 42(19): 1875–1881. DOI: 10.16016/j.1000-5404.202003159.XUE YQ, Zhang HC, Wen DL, et al. Bioprotective effects of novel polyurea materials on lung blast injury after simulated open-field explosion [J]. Joural of Third Military Medical University, 2020, 42(19): 1875–1881. DOI: 10.16016/j.1000-5404.202003159. [11] 王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 108–119. DOI: 10.11883/bzycj-2022-0515.WANG Z, CHANG LJ, HUANG XY, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and framents [J]. Explosion and Shock Waves, 2023, 43(6): 108–119. DOI: 10.11883/bzycj-2022-0515. [12] CARUSO K S, HIJUELOS J C, PECK G E, et al. Development of synthetic cortical bone for ballistic and blast testing [J]. Journal of Advanced Materials, 2006, 38(3): 27-36. [13] WANG H C. Development of a side impact finite element human thoracic model [D]. Detroit: Wayne State University, 1995. [14] DUCK F A. Physical properties of tissue [M]. London: Academic Press, 1990: 137-165. [15] SARAF H, RAMESH K T, LENNON A M, et al. Mechanical properties of soft human tissues under dynamic loading [J]. Journal of Biomechanics, 2007, 40(9): 1960–1967. DOI: 10.1016/j.jbiomech.2006.09.021. [16] JIANG Y X, ZHANG B Y, WEI J S, et al. Study on the dynamic response of polyurea coated steel tank subjected to blast loadings [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104234. DOI: 10.1016/j.jlp.2020.104234. [17] 周周杰, 陶钢, 潘保青, 等. 爆炸冲击波对人体胸部创伤机理的有限元方法研究 [J]. 爆炸与冲击, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06.ZHOU J, TAO G, PAN B Q, et al. Mechanism of blast trauma to human thorax: a finite element study [J]. Explosion and Shock Waves, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06. [18] 中国数字化可视人体数据库 [DB/OL]. (2014)[2024-06-20]. http://cvh.bmicc.cn/cvh/cn/.Chinese digitized visible human database [DB/OL]. http://cvh.bmicc.cn/cvh/cn/. [19] 王正国. 原发冲击伤的发生机制 [J]. 解放军医学杂志, 1995, 20(4): 315–317.WANG ZG. Mechanism of primary blast injury [J]. Medical Journal of Chinese PLA, 1995, 20(4): 315–317. [20] 张均奎, 王正国, 冷华光, 等. 冲击波负压与肺损伤 [J]. 爆炸与冲击, 1994, 14(1): 84–87. DOI: 10.11883/1001-1455(1994)01-0084-4.ZHANG JK, WANG ZG, LENG HG, et al. Underpressure of blast wave and lung injury [J]. Explosion and Shock Waves, 1994, 14(1): 84–87. DOI: 10.11883/1001-1455(1994)01-0084-4. [21] WHITE C S. Biomedical parameters, project harbor study: DASA-1335 [R]. Washington: Defense Atomic Support Agency, 1963. [22] AXELSSON H, YELVERTON J T. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1996, 40(s3): 31–37. DOI: 10.1097/00005373-199603001-00006.