不同状态下冰冲击的力学特性

解北京 陈铭进 陈思羽 刘志遥

解北京, 陈铭进, 陈思羽, 刘志遥. 不同状态下冰冲击的力学特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0207
引用本文: 解北京, 陈铭进, 陈思羽, 刘志遥. 不同状态下冰冲击的力学特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0207
XIE Beijing, CHEN Mingjin, CHEN Siyu, LIU Zhiyao. Experimental study on mechanical properties of ice shock under different states[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0207
Citation: XIE Beijing, CHEN Mingjin, CHEN Siyu, LIU Zhiyao. Experimental study on mechanical properties of ice shock under different states[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0207

不同状态下冰冲击的力学特性

doi: 10.11883/bzycj-2024-0207
基金项目: 国家重点研发计划(2022YFC2904100);中央高校基本科研业务费专项资金(2023ZKPYAQ04);中国矿业大学(北京)大学生创新训练项目(202312031)
详细信息
    作者简介:

    解北京(1984- ),男,博士,副教授,bjxie1984@163.com

    通讯作者:

    陈铭进(1999- ),男,硕士研究生,CMJ1357550362@163.com

  • 中图分类号: O383

Experimental study on mechanical properties of ice shock under different states

  • 摘要: 为探究非纯净冰和非完整冰在冲击载荷下的动态力学特性,基于改进后的分离式霍普金森压杆实验系统,采用快速加载、杆端降温和波形整形技术,对冻结温度为−10 ℃的完整冰(纯水,含2.5%、3.5%、4.5%盐分,含2.0%、4.5%、8.5%椰丝)和拼接冰(拼接界面倾角30°、60°)进行冲击力学特性研究;利用高速摄像技术记录破坏过程,并结合Mohr-Coulomb强度准则分析拼接冰的破坏模式。结果表明:纯水冰具有最高的抗压强度,添加椰丝的冰样次之,且二者表现出相似的正应变率效应,添加盐分的冰的抗压强度最低,应变率效应也不明显。添加椰丝的冰样的动态抗压强度随椰丝含量的增加先增大后减小;由于椰丝对小粒径碎冰的联结作用,高椰丝含量的冰样的应力-应变曲线易出现“双峰”现象。拼接平面对裂纹扩展和破坏模式均有影响,拼接冰的抗压强度低于完整冰。界面倾角较小时,拼接冰破坏以界面滑移为主;倾角大时,拼接冰以整体破坏为主,与完整冰类似。
  • 图  1  实验装置

    Figure  1.  Experimental apparatus

    图  2  拼接冰试样

    Figure  2.  A sample of spliced ice

    图  3  高/低速冲击下应变片测得的电压曲线对比

    Figure  3.  Comparison of voltage curves obtained by strain gauge under high/low speed impact

    图  4  整形后试样的动态平衡结果

    Figure  4.  The result of dynamic balance of the sample after shaping

    图  5  应变率为200 s−1时完整冰样的应力-应变曲线

    Figure  5.  Stress-strain curves of intact ice samples at strain rate of 200 s−1

    图  6  应变率为200 s−1时纯水冰的冲击破坏过程

    Figure  6.  Impact failure process of pure water ice at strain rate of 200 s−1

    图  7  应变率为200 s−1时纯水冰的应力-时间曲线

    Figure  7.  Stress-time curve of pure water ice at strain rate of 200 s−1

    图  8  不同应变率下完整冰样的抗压强度

    Figure  8.  Compressive strength of intact ice samples at different strain rates

    图  9  纯水冰和含盐冰破坏时的高速摄像图像

    Figure  9.  High-speed camera images of the destruction of pure ice and salt added ice

    图  10  含椰丝冰的应力-应变曲线

    Figure  10.  Stress-strain curve of ice containing shredded coconut

    图  11  含椰丝冰的破坏过程与破坏结果

    Figure  11.  Destruction process and result of ice containing shredded coconut

    图  12  不同拼接角度下冰样的抗压强度

    Figure  12.  Compressive strength of ice samples at different splicing angles

    图  13  不同应变率下拼接冰的应力-应变曲线

    Figure  13.  Stress-strain curves of spliced ice at different strain rates

    图  14  不同应变率下拼接冰的破坏过程

    Figure  14.  Failure process of spliced ice at different strain rates

    图  15  单轴压缩下岩石-混凝土组合体试件的破坏模式[25]

    Figure  15.  Failure mode of rock-concrete composite specimens under uniaxial compression[25]

    图  16  冰样受载情况与Mohr-Coulomb强度准则

    Figure  16.  Ice loading and Mohr-Coulomb strength criterion

    表  1  实验工况设计

    Table  1.   Experimental condition design

    试样编号材质拼接角度/(°)撞击杆速度/(m·s−1)
    1~4纯水完整8、10、12、14
    5~8水+2.5%盐完整
    9~12水+3.5%盐完整
    13~16水+4.5%盐完整
    17~20水+2.0%椰丝完整
    21~24水+4.5%椰丝完整
    25~28水+8.5%椰丝完整
    29~32纯水30
    33~36纯水60
    下载: 导出CSV
  • [1] HOHL R, SCHIESSER H H, ALLER D. Hailfall: the relationship between radar-derived hail kinetic energy and hail damage to buildings [J]. Atmospheric Research, 2002, 63(3/4): 177–207. DOI: 10.1016/S0169-8095(02)00059-5.
    [2] HOHL R, SCHIESSER H H, KNEPPER I. The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland [J]. Atmospheric Research, 2002, 61(3): 215–238. DOI: 10.1016/S0169-8095(01)00134-X.
    [3] FERRO C G, CELLINI A, MAGGIORE P. Structural damage assessment of an airfoil anti-icing system under hailstorm conditions [J]. Aerospace, 2024, 11(7): 520. DOI: 10.3390/aerospace11070520.
    [4] 刘俊杰, 刘昆, 从曙光, 等. 方槽型纵骨船舶抗冰结构冰撞动响应实验研究 [J]. 爆炸与冲击, 2021, 41(6): 065101. DOI: 10.11883/bzycj-2020-0168.

    LIU J J, LIU K, CONG S G, et al. Experimental study on dynamic response of an anti-ice hull structure with square groove longitudinals under ice impact [J]. Explosion and Shock Waves, 2021, 41(6): 065101. DOI: 10.11883/bzycj-2020-0168.
    [5] WU X Q, PRAKASH V. Dynamic compressive behavior of ice at cryogenic temperatures [J]. Cold Regions Science and Technology, 2015, 118: 1–13. DOI: 10.1016/j.coldregions.2015.06.004.
    [6] KERMANI M, FARZANEH M, GAGNON R. Compressive strength of atmospheric ice [J]. Cold Regions Science and Technology, 2007, 49(3): 195–205. DOI: 10.1016/j.coldregions.2007.05.003.
    [7] KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42(8): 2802–2806. DOI: 10.1007/s10853-006-1376-x.
    [8] SHAZLY M, PRAKASH V, LERCH B A. High strain-rate behavior of ice under uniaxial compression [J]. International Journal of Solids and Structures, 2009, 46(6): 1499–1515. DOI: 10.1016/j.ijsolstr.2008.11.020.
    [9] ZHANG Y H, WANG Q, HAN D F, et al. Dynamic splitting tensile behaviours of distilled-water and river-water ice using a modified SHPB setup [J]. International Journal of Impact Engineering, 2020, 145: 103686. DOI: 10.1016/j.ijimpeng.2020.103686.
    [10] SONG Z H, CHEN R, GUO D L, et al. Experimental investigation of dynamic shear mechanical properties and failure criterion of ice at high strain rates [J]. International Journal of Impact Engineering, 2022, 166: 104254. DOI: 10.1016/J.IJIMPENG.2022.104254.
    [11] 单仁亮, 白瑶, 黄鹏程, 等. 三向受力条件下淡水冰破坏准则研究 [J]. 力学学报, 2017, 49(2): 467–477. DOI: 10.6052/0459-1879-16-364.

    SHAN R L, BAI Y, HUANG P C, et al. Experimental research on failure criteria of freshwater ice under triaxial compressive stress [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 467–477. DOI: 10.6052/0459-1879-16-364.
    [12] 解北京, 栾铮, 刘天乐, 等. 静水压下原生组合煤岩动力学破坏特征 [J]. 煤炭学报, 2023, 48(5): 2153–2167. DOI: 10.13225/j.cnki.jccs.2023.0193.

    XIE B J, LUAN Z, LIU T L, et al. Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure [J]. Journal of China Coal Society, 2023, 48(5): 2153–2167. DOI: 10.13225/j.cnki.jccs.2023.0193.
    [13] 聂飞晴. 棉纤维增强冰复合材料的冲击动力学特性研究 [D]. 太原: 太原理工大学, 2023: 15–16. DOI: 10.27352/d.cnki.gylgu.2023.000574.

    NIE F Q. Study on impact dynamics of cotton fiber reinforced ice composite [D]. Taiyuan: Taiyuan University of Technology, 2023: 15–16. DOI: 10.27352/d.cnki.gylgu.2023.000574.
    [14] 赵恺旭. 纤维增强冰基复合材料抗冲击性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2023: 12–13. DOI: 10.27060/d.cnki.ghbcu.2023.001199.

    ZHAO K X. Study on impact resistance of fiber reinforced ice matrix composites [D]. Harbin: Harbin Engineering University, 2023: 12–13. DOI: 10.27060/d.cnki.ghbcu.2023.001199.
    [15] 梁志强. 冰的制备及力学特性研究 [D]. 沈阳: 沈阳理工大学, 2020: 22–23. DOI: 10.27323/d.cnki.gsgyc.2020.000096.

    LIANG Z Q. Study on preparation and mechanical properties of ice [D]. Shenyang: Shenyang Ligong University, 2020: 22–23. DOI: 10.27323/d.cnki.gsgyc.2020.000096.
    [16] ISAKOV M, LANGE J, KILCHERT S, et al. In-situ damage evaluation of pure ice under high rate compressive loading [J]. Materials, 2019, 12(8): 1236. DOI: 10.3390/ma12081236.
    [17] 李尚昆, 冯晓伟, 谢若泽, 等. 高应变率下纯水冰和杂质冰的动态力学行为 [J]. 爆炸与冲击, 2019, 39(9): 093103. DOI: 10.11883/bzycj-2018-0270.

    LI S K, FENG X W, XIE R Z, et al. Dynamic compression property of distill-water ice and impurity-water ice at high strain rates [J]. Explosion and Shock Waves, 2019, 39(9): 093103. DOI: 10.11883/bzycj-2018-0270.
    [18] 汪洋, 李玉龙, 刘传雄. 利用SHPB测定高应变率下冰的动态力学行为 [J]. 爆炸与冲击, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.

    WANG Y, LI Y L, LIU C X. Dynamic mechanical behaviors of ice at high strain rates [J]. Explosion and Shock Waves, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.
    [19] 解北京, 陈铭进, 陈思羽, 等. 冰试样动态冲击破坏力学特性实验研究 [J]. 防灾减灾工程学报, 2023, 43(6): 1284–1290. DOI: 10.13409/j.cnki.jdpme.20230207003.

    XIE B J, CHEN M J, CHEN S Y, et al. Experimental study on dynamic impact failure mechanical properties of ice samples [J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(6): 1284–1290. DOI: 10.13409/j.cnki.jdpme.20230207003.
    [20] NAKAO Y, YAMADA H, OGASAWARA N, et al. Impact compression test of ice by combining SHPB method and high-speed camera observation [J]. Experimental Mechanics, 2022, 62(7): 1227–1240. DOI: 10.1007/s11340-022-00874-2.
    [21] 解北京, 栾铮, 李晓旭, 等. 三维动静加载下煤的本构模型及卸荷破坏特征 [J]. 哈尔滨工业大学学报, 2024, 56(4): 61–72. DOI: 10.11918/202301054.

    XIE B J, LUAN Z, LI X X, et al. Constitutive model and unloading failure characteristics of coal under 3D coupled static and dynamic loads [J]. Journal of Harbin Institute of Technology, 2024, 56(4): 61–72. DOI: 10.11918/202301054.
    [22] DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155–179. DOI: 10.1016/0022-5096(63)90050-4.
    [23] 陈晓东. 海冰与海水间热力作用过程及海冰单轴压缩强度特性的试验研究 [D]. 大连: 大连理工大学, 2019: 76–79. DOI: 10.26991/d.cnki.gdllu.2019.004313.

    CHEN X D. Experimental study on sea ice - water thermodynamic process and characteristics of sea ice uniaxial compressive strength [D]. Dalian: Dalian University of Technology, 2019: 76–79. DOI: 10.26991/d.cnki.gdllu.2019.004313.
    [24] COLE D M. The microstructure of ice and its influence on mechanical properties [J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1797–1822. DOI: 10.1016/S0013-7944(01)00031-5.
    [25] 姚韦靖, 刘宇, 庞建勇, 等. 不同界面倾角岩石-混凝土组合体蠕变特性研究 [J]. 采矿与岩层控制工程学报, 2024, 6(4): 141–153. DOI: 10.13532/j.jmsce.cn10-1638/td.20240715.001.

    YAO W J, LIU Y, PANG J Y, et al. Creep behavior of combined rock-concrete specimens with different interface inclination angles [J]. Journal of Mining and Strata Control Engineering, 2024, 6(4): 141–153. DOI: 10.13532/j.jmsce.cn10-1638/td.20240715.001.
    [26] 赵坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性 [J]. 岩石力学与工程学报, 2003, 22(2): 171–176. DOI: 10.3321/j.issn:1000-6915.2003.02.001.

    ZHAO J, LI H B. Estimating the dynamic strength of rock using Mohr-Coulomb and Hoek-Brown criteria [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 171–176. DOI: 10.3321/j.issn:1000-6915.2003.02.001.
    [27] WU F, LIU Y, GAO R B, et al. Study on the influence mechanism of interfacial inclination angle on the mechanical behavior of coal and concrete specimens [J]. Construction and Building Materials, 2024, 443: 137787. DOI: 10.1016/J.CONBUILDMAT.2024.137787.
    [28] 薛珂, 王江涛, 张毓颖, 等. 三轴加载条件下层理煤体的力学特性和破坏机制研究 [J]. 中国安全生产科学技术, 2023, 19(12): 71–78. DOI: 10.11731/j.issn.1673-193x.2023.12.009.

    XUE K, WANG J T, ZHANG Y Y, et al. Study on mechanical properties and failure mechanism of layered coal under triaxial loading conditions [J]. Journal of Safety Science and Technology, 2023, 19(12): 71–78. DOI: 10.11731/j.issn.1673-193x.2023.12.009.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  28
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-09-18
  • 网络出版日期:  2024-09-23

目录

    /

    返回文章
    返回