底部爆炸冲击下乘员脊柱的损伤行为和风险分析

李桂兵 李文博 汪国胜 覃凌云 蔡志华

李桂兵, 李文博, 汪国胜, 覃凌云, 蔡志华. 底部爆炸冲击下乘员脊柱的损伤行为和风险分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0211
引用本文: 李桂兵, 李文博, 汪国胜, 覃凌云, 蔡志华. 底部爆炸冲击下乘员脊柱的损伤行为和风险分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0211
LI Guibing, LI Wenbo, WANG Guosheng, QIN Lingyun, CAI Zhihua. Analysis of occupant spinal injury behavior and risk in under-body blast impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0211
Citation: LI Guibing, LI Wenbo, WANG Guosheng, QIN Lingyun, CAI Zhihua. Analysis of occupant spinal injury behavior and risk in under-body blast impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0211

底部爆炸冲击下乘员脊柱的损伤行为和风险分析

doi: 10.11883/bzycj-2024-0211
基金项目: 中央军委基础加强计划技术领域基金(2021-JCJQ-JJ-1309);湖南省自然科学基金(2023JJ30246)
详细信息
    作者简介:

    李桂兵(1987- ),男,博士,副教授,guibing.li@hnust.edu.cn

    通讯作者:

    汪国胜(1971- ),男,博士,研究员,wgsheng321449@163.com

  • 中图分类号: O383.1

Analysis of occupant spinal injury behavior and risk in under-body blast impacts

  • 摘要: 底部爆炸冲击极易造成装甲车辆乘载员脊柱损伤,为全面了解底部爆炸冲击作用下的乘员脊柱各节段损伤行为和风险,通过基于高生物逼真度人体有限元模型的数值仿真模拟典型底部爆炸冲击下乘员脊柱的动态响应过程,融合运动学、动力学和生物力学响应研究脊柱各节段潜在的损伤行为,并利用生物力学指标分析不同受载工况和防护座椅设计参数下乘员脊柱的损伤风险。结果表明:C4-T3段脊柱后伸过展是棘突、横突和椎间盘纤维环的主要致伤因素,T7-T12段脊柱损伤主要受前屈过弯和轴向压缩共同作用,腰椎轴向压缩导致椎体前侧和椎间盘髓核处高损伤风险;脊柱各节段损伤风险随受载加速度峰值增大而提高,抗爆座椅防护下颈椎仍存在高骨折风险;减小座椅悬架刚度可降低乘员脊柱的损伤风险,但在0.6~1.2 kN·s/m范围内改变座椅悬架阻尼对乘员脊柱的损伤风险无明显影响。
  • 图  1  THUMS模型

    Figure  1.  THUMS model

    图  2  THUMS模型验证加载仿真模型及加载曲线

    Figure  2.  Simulation model and loading pulses for THUMS model validation

    图  3  THUMS模型T1、T5、T8和T12加速度响应与尸体试验数据[9]对比

    Figure  3.  Comparison of T1, T5, T8 and T12 acceleration-time histories between the THUMS model and cadaver test data[9]

    图  4  UBB冲击环境下的乘员受载仿真模型及加载脉冲

    Figure  4.  Simulation model and loading pulse of occupant in UBB impact environment

    图  5  UBB冲击载荷下的乘员受载运动学响应(蓝色所示为骨骼)

    Figure  5.  Kinematic response of occupant under UBB impact load (bones shown in blue)

    图  6  UBB冲击载荷下的乘员脊柱位姿形态随时间变化过程

    Figure  6.  The temporal variation process of occupant spine posture under UBB impact load

    图  7  脊柱各节段截面力和弯矩时间历程曲线

    Figure  7.  Time history curves of cross-sectional forces and bending moments in various segments of the spine

    图  8  脊柱各节段最大截面力和弯矩峰值相对L5的比值

    Figure  8.  Ratios of peak cross-sectional force and bending moment of each segment of the spine to those of L5

    图  9  颈椎椎体应力和椎间盘应变分布随时间的变化

    Figure  9.  The temporal variation of stress distribution in cervical vertebrae and intervertebral discs

    图  10  胸腰椎椎体应力和椎间盘应变分布随时间的变化

    Figure  10.  The temporal variation of stress distribution in thoraco-lumbar vertebrae and intervertebral discs

    图  11  椎体最大应力随UBB加速度峰值和座椅悬架刚/度阻尼的变化

    Figure  11.  Variation of the Maximum vertebral stress with the peak UBB acceleration, and the stiffness and damping of the seat suspension

    表  1  仿真矩阵

    Table  1.   Simulation matrix

    编号UBB峰值/g刚度/(kN∙m−1)阻尼/(kN·s∙m−1)
    0200801.2
    1100801.2
    2150
    3250
    4300
    5200501.2
    660
    770
    8200800.6
    90.8
    101.0
    下载: 导出CSV
  • [1] BELMONT JR P J, GOODMAN G P, ZACCHILLI M, et al. Incidence and epidemiology of combat injuries sustained during “the surge” portion of operation Iraqi freedom by a U. S. army brigade combat team [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2010, 68(1): 204–210. DOI: 10.1097/TA.0b013e3181bdcf95.
    [2] COMSTOCK S, PANNELL D, TALBOT M, et al. Spinal injuries after improvised explosive device incidents: implications for tactical combat casualty care [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2011, 71(5): S413–S417. DOI: 10.1097/TA.0b013e318232e575.
    [3] SCHOENFELD A J, GOODMAN G P, BELMONT JR P J. Characterization of combat-related spinal injuries sustained by a US army brigade combat team during operation Iraqi freedom [J]. The Spine Journal, 2012, 12(9): 771–776. DOI: 10.1016/j.spinee.2010.05.004.
    [4] YOGANANDAN N, MOORE J, ARUN M W J, et al. Dynamic responses of intact post mortem human surrogates from inferior-to-superior loading at the pelvis [J]. Stapp Car Crash Journal, 2014, 58: 123–143. DOI: 10.4271/2014-22-0005.
    [5] YOGANANDAN N, HUMM J, BAISDEN J, et al. Temporal corridors of forces and moments, and injuries to pelvis-lumbar spine in vertical impact simulating underbody blast [J]. Journal of Biomechanics, 2023, 150: 111490. DOI: 10.1016/j.jbiomech.2023.111490.
    [6] BAILEY A M, CHRISTOPHER J J, BROZOSKI F, et al. Post mortem human surrogate injury response of the pelvis and lower extremities to simulated underbody blast [J]. Annals of Biomedical Engineering, 2015, 43(8): 1907–1917. DOI: 10.1007/s10439-014-1211-5.
    [7] PIETSCH H, DANELSON K, CAVANAUGH J, et al. A comparison of fracture response in female and male lumbar spine in simulated under body blast component tests [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 150: 106303. DOI: 10.1016/j.jmbbm.2023.106303.
    [8] RUPP J D, ZASECK L, MILLER C S, et al. Whole body PMHS response in injurious experimental accelerative loading events [J]. Annals of Biomedical Engineering, 2021, 49(11): 3031–3045. DOI: 10.1007/s10439-021-02803-1.
    [9] OTT K A, DEMETROPOULOS C K, LUONGO M E, et al. Evaluation of the whole body spine response to sub-injurious vertical loading [J]. Annals of Biomedical Engineering, 2021, 49(11): 3099–3117. DOI: 10.1007/s10439-020-02656-0.
    [10] 尹宁, 王洪亮, 张进成, 等. 垂向冲击下穿戴装备对乘员损伤影响研究 [J]. 爆炸与冲击, 2021, 41(8): 085101. DOI: 10.11883/bzycj-2020-0229.

    YIN N, WANG H L, ZHANG J C, et al. Research on the effect of wearing equipment on occupant injury under vertical impact [J]. Explosion and Shock Waves, 2021, 41(8): 085101. DOI: 10.11883/bzycj-2020-0229.
    [11] 罗鸣, 周云波, 张进成, 等. 爆炸冲击作用时间差对盆骨和腰椎的损伤研究 [J]. 爆炸与冲击, 2021, 41(1): 015902. DOI: 10.11883/bzycj-2020-0059.

    LUO M, ZHOU Y B, ZHANG J C, et al. Research on time interval of explosion impact on pelvis and lumbar spine injury [J]. Explosion and Shock Waves, 2021, 41(1): 015902. DOI: 10.11883/bzycj-2020-0059.
    [12] SOMASUNDARAM K, ZHANG L, SHERMAN D, et al. Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100: 103398. DOI: 10.1016/j.jmbbm.2019.103398.
    [13] WEAVER C M, STITZEL J D. Pelvic response of a total human body finite element model during simulated under body blast impacts [C]//Proceedings of IRCOBI Conference 2015. Lyon, France, 2015.
    [14] 牛坤, 焦猛, 莫富灏, 等. 底部爆炸冲击下装甲车乘员下肢损伤行为与防护研究 [J]. 兵器装备工程学报, 2022, 43(12): 1–7. DOI: 10.11809/bqzbgcxb2022.12.001.

    NIU K, JIAO M, MO F H, et al. Research on injury behaviors and protection of armored vehicle occupant lower limbs in under-body blast impacts [J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 1–7. DOI: 10.11809/bqzbgcxb2022.12.001.
    [15] LUO W, NIU K, MO F H, et al. Pelvis and thoracolumbar spine response in simulated under-body blast impacts and protective seat cushion design [J]. Acta of Bioengineering and Biomechanics, 2024, 26(1): 143–151. DOI: 10.37190/ABB-02423-2024-02.
    [16] 石秉良, 王显会, 张云, 等. 军用车辆底部防护研究与发展综述 [J]. 兵工学报, 2016, 37(10): 1902–1914. DOI: 10.3969/j.issn.1000-1093.2016.10.018.

    SHI B L, WANG X H, ZHANG Y, et al. An overview of development and research on bottom protection capability of military vehicle [J]. Acta Armamentarii, 2016, 37(10): 1902–1914. DOI: 10.3969/j.issn.1000-1093.2016.10.018.
    [17] 汪国胜, 雷强顺, 曹宇, 等. 军用车辆座椅减振抗爆技术研究现状与发展趋势: 军用车辆乘载员减振抗爆座椅设计技术研究系列一 [J]. 兵工学报, 2022, 43(7): 1718–1732. DOI: 10.12382/bgxb.2021.0402.

    WANG G S, LEI Q S, CAO Y, et al. Current status and trends in shock-absorbing and anti-explosion technologies for military vehicle seats research on design technology of shock absorbing and anti-explosion for military vehicle seats: series Ⅰ [J]. Acta Armamentarii, 2022, 43(7): 1718–1732. DOI: 10.12382/bgxb.2021.0402.
    [18] IWAMOTO M, NAKAHIRA Y, KIMPARA H. Development and validation of the Total Human Model for Safety (THUMS) toward further understanding of occupant injury mechanisms in precrash and during crash [J]. Traffic Injury Prevention, 2015, 16(S1): S36–S48. DOI: 10.1080/15389588.2015.1015000.
    [19] KITAGAWA Y, HAYASHI S, YAMADA K, et al. Occupant kinematics in simulated autonomous driving vehicle collisions: influence of seating position, direction and angle [J]. Stapp Car Crash Journal, 2017, 61: 101–155. DOI: 10.4271/2017-22-0005.
    [20] SOMASUNDARAM K, SHERMAN D, BEGEMAN P, et al. Mechanisms and timing of injury to the thoracic, lumbar and sacral spine in simulated underbody blast PMHS impact tests [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116: 104271. DOI: 10.1016/j.jmbbm.2020.104271.
    [21] ZIMMERMANN E A, SCHAIBLE E, GLUDOVATZ B, et al. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions [J]. Scientific Reports, 2016, 6: 21072. DOI: 10.1038/srep21072.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-09-30
  • 网络出版日期:  2024-10-31

目录

    /

    返回文章
    返回