• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

弹体侵彻钢筋混凝土遮弹层的阻力方程

王武 杨军 王安宝 李胜杰

卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟[J]. 爆炸与冲击, 2014, 34(2): 181-187. doi: 10.11883/1001-1455(2014)02-0181-07
引用本文: 王武, 杨军, 王安宝, 李胜杰. 弹体侵彻钢筋混凝土遮弹层的阻力方程[J]. 爆炸与冲击, 2025, 45(3): 033301. doi: 10.11883/bzycj-2024-0217
Lu Zi-xing, Li Kang. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs[J]. Explosion And Shock Waves, 2014, 34(2): 181-187. doi: 10.11883/1001-1455(2014)02-0181-07
Citation: WANG Wu, YANG Jun, WANG Anbao, LI Shengjie. Resistance equation of projectile penetrating into reinforced concrete shield[J]. Explosion And Shock Waves, 2025, 45(3): 033301. doi: 10.11883/bzycj-2024-0217

弹体侵彻钢筋混凝土遮弹层的阻力方程

doi: 10.11883/bzycj-2024-0217
详细信息
    作者简介:

    王 武(1985- ),男,博士研究生,工程师,w-wang21@mails.tsinghua.edu.cn

    通讯作者:

    杨 军(1974- ),男,博士,研究员,junyang@tsinghua.edu.cn

  • 中图分类号: O385

Resistance equation of projectile penetrating into reinforced concrete shield

  • 摘要: 为研究弹体在侵彻钢筋混凝土受到阻力的问题,分析了现有钢筋有限长度固支梁理论模型的局限,根据钢筋屈服准则研究和耗能分析,提出了弹体直接命中钢筋剪切-塑性铰链模型,以及弹体与钢筋侧面接触时的塑性弦模型,通过耗能分析得到了弹体直接阻力函数;以空腔膨胀理论模型为基础,根据弹体侵彻深度经验公式计算结果,得到了钢筋间接影响下混凝土的阻力方程。通过与已有试验数据对比,验证了理论模型的合理性。通过分析钢筋屈服强度、直径、网眼尺寸等配筋方式,以及弹体命中部位对遮弹层抗侵彻性能的影响,给出了遮弹层配筋设计建议:相邻两层钢筋网错孔设置;钢筋网眼与弹体直径之比宜设为0.5~0.8;应结合钢筋极限塑性应变进行高强钢筋选择。
  • 图  1  弹体与钢筋的典型接触方式[15]

    Figure  1.  Typical case of contact types between projectile and reinforcing bar[15]

    图  2  钢筋受力示意图

    Figure  2.  Schematic diagram of reinforcing bar under dynamic load

    图  3  尖卵头刚性弹剖面示意图

    Figure  3.  Schematic diagram of oval shaped projectile

    图  4  塑性铰等效长度

    Figure  4.  Equivalent length of plastic hinge

    图  5  塑性铰链变形示意图

    Figure  5.  Schematic diagram of plastic hinge deformation

    图  6  钢筋受弯矩作用屈服时横截面应力分布

    Figure  6.  Cross section stress distribution of reinforcing bar under bending moment action

    图  7  钢筋受弯矩和轴力共同作用屈服时横截面的应力分布

    Figure  7.  Cross section stress distribution of reinforcing bar under combined bending moment and axial force

    图  8  弯矩-轴力共同作用下钢筋屈服面

    Figure  8.  Yield surface of reinforcing bar under the combined action of bending moment and axial force

    图  9  钢筋塑性变形区示意图

    Figure  9.  Schematic of plastic deformation zone of reinforcing bar

    图  10  弹体侵彻计算流程图

    Figure  10.  Flow chart of projectile penetration calculation

    图  11  侵彻试验后部分靶板及钢筋破坏形态[29]

    Figure  11.  Partial target plate and reinforcing bars failure morphology after penetration test[29]

    图  12  弹体减加速度计算结果

    Figure  12.  Calculation results of projectile deceleration

    图  13  单层钢筋网耗能计算结果

    Figure  13.  Calculation results of energy consumption for single-layer reinforcing bar mesh

    表  1  钢筋混凝土靶侵彻试验工况及结果

    Table  1.   Test conditions and results of reinforced concrete target penetration test

    靶板编号 计划撞击点位置 配筋方式/mm 弹体质量/g 弹体初速度/(m·s−1) 侵彻深度/mm 相对误差/%
    试验结果[29] 理论计算结果
    1 网眼中心 10@75 4914 439 568 523 7.92
    2 钢筋交叉点 10@75 4920 439 546 503 7.88
    3 网眼中心 6.5@30 4968 430 552 517 6.34
    4 钢筋交叉点 6.5@30 4962 431 501
    下载: 导出CSV

    表  2  弹体侵彻钢筋混凝土靶部分影响参数

    Table  2.   Impact parameters of projectile penetration into reinforced concrete targets

    γvol/% 2b/mm sh/mm sh/2a γvol/% 2b/mm sh/mm sh/2a γvol/% 2b/mm sh/mm sh/2a
    4 10 26.18 0.17 5 12 30.16 0.2 6 14 34.21 0.23
    12 37.70 0.25 14 41.05 0.27 16 44.68 0.3
    14 51.31 0.34 16 53.62 0.36 18 56.55 0.38
    16 67.02 0.45 18 67.86 0.45 20 69.81 0.47
    18 84.82 0.57 20 83.78 0.56 22 84.47 0.56
    20 104.72 0.7 22 101.37 0.68 24 100.53 0.67
    22 126.71 0.84 24 120.64 0.8 26 117.98 0.79
    24 150.8 1.01 26 141.58 0.94 28 136.83 0.91
     注:γvol为体积配筋率,2b为钢筋直径,sh为钢筋网眼大小。
    下载: 导出CSV
  • [1] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7.
    [2] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 224–284. DOI: 10.1016/j.ijimpeng.2005.04.005.
    [3] RIERA J D. Penetration, scabbing and perforation of concrete structures hit by solid missiles [J]. Nuclear Engineering and Design, 1989, 115(1): 121–131. DOI: 10.1016/0029-5493(89)90265-3.
    [4] 邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.

    DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.
    [5] LUK V K, FORRESTAL M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles [J]. International Journal of Impact Engineering, 1987, 6(4): 291–301. DOI: 10.1016/0734-743X(87)90096-0.
    [6] BARR P. Guidelines for the design and assessment of concrete structures subjected to impact: SRD-R-439-Issue-2 [R]. London: HMSO, 1988.
    [7] NDRC. Effects of impact and explosion: summary technical report of division 2, Vol. 1 [R]. Washington DC: National Defense Research Committee, 1946.
    [8] BERRIAUD C, SOKOLOVSKY A, GUERAUD R, et al. Local behaviour of reinforced concrete walls under missile impact [J]. Nuclear Engineering & Design, 1978, 45(2): 457–469. DOI: 10.1016/0029-5493(78)90235-2.
    [9] DANCYGIER A N. Effect of reinforcement ratio on the resistance of reinforced concrete to hard projectile impact [J]. Nuclear Engineering & Design, 1997, 172(1/2): 233–245. DOI: 10.1016/S0029-5493(97)00055-1.
    [10] CHEN X W, LI X L, HUANG F L, et al. Normal perforation of reinforced concrete target by rigid projectile [J]. International Journal of Impact Engineering, 2008, 35(10): 1119–1129. DOI: 10.1016/j.ijimpeng.2008.01.002.
    [11] GRISARO H, DANCYGIER A N. A modified energy method to assess the residual velocity of non-deforming projectiles that perforate concrete barriers [J]. International Journal of Protective Structures, 2014, 5(3): 307–321. DOI: 10.1260/2041-4196.5.3.307.
    [12] XU X Z, MA T B, NING J G. Failure mechanism of reinforced concrete subjected to projectile impact loading [J]. Engineering Failure Analysis, 2019, 96: 468–483. DOI: 10.1016/j.engfailanal.2018.11.006.
    [13] DENG Y J, CHEN X W, SONG W J. Dynamic cavity-expansion penetration model of elastic-cracked-crushed response for reinforced-concrete targets [J]. International Journal of Impact Engineering, 2021, 157: 103981. DOI: 10.1016/j.ijimpeng.2021.103981.
    [14] LEE S, KIM C, YU Y, et al. Effect of reinforcing steel on the impact resistance of reinforced concrete panel subjected to hard-projectile impact [J]. International Journal of Impact Engineering, 2021, 148: 103762. DOI: 10.1016/j.ijimpeng.2020.103762.
    [15] 朱擎, 李述涛, 陈叶青. 配筋对超高性能混凝土抗侵彻性能的影响 [J]. 工程力学, 2023, 40(S1): 62–73, 91. DOI: 10.6052/j.issn.1000-4750.2022.05.S046.

    ZHU Q, LI S T, CHEN Y Q. Influence of reinforcement on anti-penetration resistance of ultra-high-performance concrete [J]. Engineering Mechanics, 2023, 40(S1): 62–73, 91. DOI: 10.6052/j.issn.1000-4750.2022.05.S046.
    [16] 张爽, 武海军, 黄风雷. 刚性弹正侵彻钢筋混凝土靶阻力模型 [J]. 兵工学报, 2017, 38(11): 2081–2092. DOI: 10.3969/j.issn.1000-1093.2017.11.001.

    ZHANG S, WU H J, HUANG F L. Resistance model of rigid projectile penetrating into reinforced concrete target [J]. Acta Armamentarii, 2017, 38(11): 2081–2092. DOI: 10.3969/j.issn.1000-1093.2017.11.001.
    [17] 黄民荣, 顾晓辉, 高永宏. 刚性弹丸侵彻钢筋混凝土的实验和简化分析模型 [J]. 实验力学, 2009, 24(4): 283–290.

    HUANG M R, GU X H, GAO Y H. Experiment and simplified analytical model for penetration of rigid projectile in a reinforced concrete target [J]. Journal of Experimental Mechanics, 2009, 24(4): 283–290.
    [18] 黄民荣. 刚性弹体对混凝土靶的侵彻与贯穿机理研究 [D]. 南京: 南京理工大学, 2011.

    HUANG M R. Penetration and perforation mechanism of rigid projectile into the concrete target [D]. Nanjing: Nanjing University of Science & Technology, 2011.
    [19] HUANG C L, WANG Z Q, LI S T, et al. Analytical model of penetration depth and energy dissipation considering impact position [J]. International Journal of Impact Engineering, 2024, 191: 104997. DOI: 10.1016/j.ijimpeng.2024.104997.
    [20] 刘志林, 孙巍巍, 王晓鸣, 等. 卵形弹丸垂直侵彻钢筋混凝土靶的工程解析模型 [J]. 弹道学报, 2015, 27(3): 84–90. DOI: 10.3969/j.issn.1004-499X.2015.03.016.

    LIU Z L, SUN W W, WANG X M, et al. Engineering analytical model of ogive-nose steel projectiles vertically penetrating reinforced concrete target [J]. Journal of Ballistics, 2015, 27(3): 84–90. DOI: 10.3969/j.issn.1004-499X.2015.03.016.
    [21] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    [22] PENG Y, WU H, FANG Q, et al. A note on the deep penetration and perforation of hard projectiles into thick targets [J]. International Journal of Impact Engineering, 2015, 85: 37–44. DOI: 10.1016/j.ijimpeng.2015.06.013.
    [23] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. GB/T 50081—2019 混凝土物理力学性能试验方法标准 [S]. 北京: 中国建筑工业出版社, 2019: 145–146.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. GB/T 50081—2019 Standard for test methods of concrete physical and mechanical properties [S]. Beijing: China Architecture and Building Press, 2019: 145–146.
    [24] 黄晓莹, 陶俊林. 三种建筑钢筋材料高应变率下拉伸力学性能研究 [J]. 工程力学, 2016, 33(7): 184–189. DOI: 10.6052/j.issn.1000-4750.2014.12.1064.

    HUANG X Y, TAO J L. Tensile mechanical properties research of three construction steel bars in high strain rate [J]. Engineering Mechanics, 2016, 33(7): 184–189. DOI: 10.6052/j.issn.1000-4750.2014.12.1064.
    [25] NONAKA T. Some interaction effects in a problem of plastic beam dynamics-Part 2: analysis of a structure as a system of one degree of freedom [J]. Journal of Applied Mechanics, 1967, 34(3): 631–637. DOI: 10.1115/1.3607754.
    [26] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [27] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [28] 王安宝, 邓国强, 杨秀敏, 等. 一个新的通用型侵彻深度计算公式 [J]. 土木工程学报, 2021, 54(10): 36–46. DOI: 10.15951/j.tmgcxb.2021.10.004.

    WANG A B, DENG G Q, YANG X M, et al. A new general formula for calculating penetration depth [J]. China Civil Engineering Journal, 2021, 54(10): 36–46. DOI: 10.15951/j.tmgcxb.2021.10.004.
    [29] ZHANG X Y, WU H J, ZHANG S, et al. Projectile penetration of reinforced concrete considering the effect of steel reinforcement: Experimental study and theoretical analysis [J]. International Journal of Impact Engineering, 2020, 144: 103653. DOI: 10.1016/j.ijimpeng.2020.103653.
  • 加载中
推荐阅读
钻地弹侵彻深度尺寸效应分析与实用计算公式
何勇 等, 爆炸与冲击, 2025
典型战斗部侵彻爆炸下块石混凝土的遮弹层设计
吴昊 等, 爆炸与冲击, 2025
锯齿外形对弹体带攻角侵彻横向过载的影响
王帅 等, 爆炸与冲击, 2025
弹体对超高性能混凝土侵彻深度的研究
聂晓东 等, 爆炸与冲击, 2024
弹体侵彻混凝土的优化模型及可视化仿真研究
苏永超 等, 高压物理学报, 2025
弹丸高速侵彻下az31b镁合金响应的数值模拟研究
周涛 等, 高压物理学报, 2025
弹体尾部斜锥面形状对侵彻偏转的影响
张丁山 等, 高压物理学报, 2024
Exploring non-invertible symmetries in free theories
Niro, Pierluigi et al., JOURNAL OF HIGH ENERGY PHYSICS, 2023
Transient rock breaking characteristics by successive impact of shield disc cutters under confining pressure conditions
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Fractal analysis of limestone damage under successive impact by shield disc cutters
ENGINEERING FRACTURE MECHANICS
Powered by
图(13) / 表(2)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  70
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-09-15
  • 网络出版日期:  2024-09-19
  • 刊出日期:  2025-03-05

目录

    /

    返回文章
    返回