创伤后应激障碍的生物标志物研究进展

张泽瀚 费晓炜 吕伟豪 蔡敏 庄茁 王化宁 费舟

张泽瀚, 费晓炜, 吕伟豪, 蔡敏, 庄茁, 王化宁, 费舟. 创伤后应激障碍的生物标志物研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0222
引用本文: 张泽瀚, 费晓炜, 吕伟豪, 蔡敏, 庄茁, 王化宁, 费舟. 创伤后应激障碍的生物标志物研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0222
ZHANG Zehan, FEI Xiaowei, LV Weihao, CAI Min, ZHUANG Zhuo, WANG Huaning, FEI Zhou. Research progress on biomarkers of post-traumatic stress disorder[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0222
Citation: ZHANG Zehan, FEI Xiaowei, LV Weihao, CAI Min, ZHUANG Zhuo, WANG Huaning, FEI Zhou. Research progress on biomarkers of post-traumatic stress disorder[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0222

创伤后应激障碍的生物标志物研究进展

doi: 10.11883/bzycj-2024-0222
基金项目: 国家重点研究发展计划(2020-JCJQ-ZD-254-04);空军军医大学基础加强计划(2023JSYX04)
详细信息
    作者简介:

    张泽瀚(1996- ),男,硕士,医师,17601365622@163.com

    通讯作者:

    费 舟(1961- ),男,博士,主任医师,feizhou@fmmu.edu.cn

  • 中图分类号: O383

Research progress on biomarkers of post-traumatic stress disorder

  • 摘要: 创伤后应激障碍(post-traumatic stress disorder,PTSD)源于个体经历创伤性事件后所产生的精神健康障碍,常为爆炸或冲击等外部因素所触发,特别在军事战争中其患病率异常显著,对患者及社会造成极大危害。目前对PTSD的诊断仍缺乏客观标准,对其进行筛查和定性诊断存在困难。本文总结了最新的PTSD相关遗传易感性生物标志物、神经影像学发现的大脑结构及功能改变相关的生物标志物、外周自主神经系统功能变化以及特异性外周体液生物标志物的研究进展,并探讨了这些生物标志物在临床中的潜在应用。生物标志物研究可以为理解PTSD的神经生物学机制提供关键线索,为患者提供更有效的筛查、诊断和疾病监测手段。PTSD的生物标志物的开发已经历了选择目的标志物、进行实验内部验证确定检验效能和外部验证确定标志物的可用性等阶段,目前正处于验证临床效用阶段,需要多中心、大样本量数据对候选标志物进行检测并确定其成本效益。此外,基于生物标志物与临床生理学及人口统计学风险因素的综合应用显示出潜在优势,在验证其相对于问卷调查的优越性后,基于体液蛋白组学检测所构建的多蛋白指标联合诊断模型将为PTSD的诊断提供坚实依据。
  • [1] MERIANS A N, SPILLER T, HARPAZ-ROTEM I, et al. Post-traumatic stress disorder [J]. Medical Clinics of North America, 2023, 107(1): 85–99. DOI: 10.1016/j.mcna.2022.04.003.
    [2] LONNEN E, PASKELL R. Gender, sex and complex PTSD clinical presentation: a systematic review [J]. European Journal of Psychotraumatology, 2024, 15(1): 2320994. DOI: 10.1080/20008066.2024.2320994.
    [3] PETEREIT-HAACK G, BOLM-AUDORFF U, ROMERO STARKE K, et al. Occupational risk for post-traumatic stress disorder and trauma-related depression: a systematic review with meta-analysis [J]. International Journal of Environmental Research and Public Health, 2020, 17(24): 9369. DOI: 10.3390/IJERPH17249369.
    [4] BURBACK L, BRÉMAULT-PHILLIPS S, NIJDAM M J, et al. Treatment of posttraumatic stress disorder: a state-of-the-art review [J]. Current Neuropharmacology, 2024, 22(4): 557–635. DOI: 10.2174/1570159X21666230428091433.
    [5] DIAMOND P R, AIRDRIE J N, HILLER R, et al. Change in prevalence of post-traumatic stress disorder in the two years following trauma: a meta-analytic study [J]. European Journal of Psychotraumatology, 2022, 13(1): 2066456. DOI: 10.1080/20008198.2022.2066456.
    [6] KOENEN K C, RATANATHARATHORN A, NG L, et al. Posttraumatic stress disorder in the world mental health surveys [J]. Psychological Medicine, 2017, 47(13): 2260–2274. DOI: 10.1017/S0033291717000708.
    [7] JOHNSON R J, ANTONACCIO O, BOTCHKOVAR E, et al. War trauma and PTSD in Ukraine’s civilian population: comparing urban-dwelling to internally displaced persons [J]. Social Psychiatry and Psychiatric Epidemiology, 2022, 57(9): 1807–1816. DOI: 10.1007/s00127-021-02176-9.
    [8] BEN-EZRA M, GOODWIN R, LESHEM E, et al. PTSD symptoms among civilians being displaced inside and outside the Ukraine during the 2022 Russian invasion [J]. Psychiatry Research, 2023, 320: 115011. DOI: 10.1016/j.psychres.2022.115011.
    [9] KARATZIAS T, SHEVLIN M, BEN-EZRA M, et al. War exposure, posttraumatic stress disorder, and complex posttraumatic stress disorder among parents living in Ukraine during the Russian war [J]. Acta psychiatrica Scandinavica, 2023, 147(3): 276–285. DOI: 10.1111/acps.13529.
    [10] FINLAY S E, EARBY M, BAKER D J, et al. Explosions and human health: the long-term effects of blast injury [J]. Prehospital and Disaster Medicine, 2012, 27(4): 385–391. DOI: 10.1017/S1049023X12000891.
    [11] MAALOUF F T, HAIDAR R, MANSOUR F, et al. Anxiety, depression and PTSD in children and adolescents following the Beirut port explosion [J]. Journal of Affective Disorders, 2022, 302: 58–65. DOI: 10.1016/j.jad.2022.01.086.
    [12] PEREZ-GARCIA G, GAMA SOSA M A, DE GASPERI R, et al. Chronic post-traumatic stress disorder-related traits in a rat model of low-level blast exposure [J]. Behavioural Brain Research, 2018, 340: 117–125. DOI: 10.1016/j.bbr.2016.09.061.
    [13] SU Y J. PTSD and depression in adult burn patients three months postburn: the contribution of psychosocial factors [J]. General Hospital Psychiatry, 2023, 82: 33–40. DOI: 10.1016/j.genhosppsych.2023.03.004.
    [14] MAERCKER A, CLOITRE M, BACHEM R, et al. Complex post-traumatic stress disorder [J]. The Lancet, 2022, 400(10345): 60–72. DOI: 10.1016/S0140-6736(22)00821-2.
    [15] NANAVATI H D, AREVALO A, MEMON A A, et al. Associations between posttraumatic stress and stroke: a systematic review and meta-analysis [J]. Journal of Traumatic Stress, 2023, 36(2): 259–271. DOI: 10.1002/jts.22925.
    [16] VAN DEN BERK CLARK C, KANSARA V, FEDOROVA M, et al. How does PTSD treatment affect cardiovascular, diabetes and metabolic disease risk factors and outcomes? A systematic review [J]. Journal of Psychosomatic Research, 2022, 157: 110793. DOI: 10.1016/j.jpsychores.2022.110793.
    [17] DAVIS L L, SCHEIN J, CLOUTIER M, et al. The economic burden of posttraumatic stress disorder in the United States from a societal perspective [J]. The Journal of Clinical Psychiatry, 2022, 83(3): 21m14116. DOI: 10.4088/JCP.21M14116.
    [18] HANSEN M, ARMOUR C, MCGLINCHEY E, et al. Investigating the DSM-5 and the ICD-11 PTSD symptoms using network analysis across two distinct samples [J]. Psychological Trauma: Theory, Research, Practice, and Policy, 2023, 15(5): 757–766. DOI: 10.1037/tra0001281.
    [19] SKÓRZEWSKA A, LEHNER M, WISŁOWSKA-STANEK A, et al. Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours [J]. Behavioural Brain Research, 2020, 386: 112591. DOI: 10.1016/j.bbr.2020.112591.
    [20] JAMES L M, GEORGOPOULOS A P. Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans [J]. Brain, Behavior, & Immunity - Health, 2022, 26: 100567. DOI: 10.1016/j.bbih.2022.100567.
    [21] VACCARINO V, SHAH A J, MONCAYO V, et al. Posttraumatic stress disorder, myocardial perfusion, and myocardial blood flow: a longitudinal twin study [J]. Biological Psychiatry, 2022, 91(7): 615–625. DOI: 10.1016/j.biopsych.2021.09.016.
    [22] CUSACK S E, MAIHOFER A X, BUSTAMANTE D, et al. Genetic influences on testosterone and PTSD [J]. Journal of Psychiatric Research, 2024, 174: 8–11. DOI: 10.1016/j.jpsychires.2024.04.002.
    [23] BAGHAEI A, ZOSHK M Y, HOSSEINI M, et al. Prominent genetic variants and epigenetic changes in post-traumatic stress disorder among combat veterans [J]. Molecular Biology Reports, 2024, 51(1): 325. DOI: 10.1007/s11033-024-09276-0.
    [24] TSEILIKMAN V E, TSEILIKMAN O B, PASHKOV A A, et al. Mechanisms of susceptibility and resilience to PTSD: role of dopamine metabolism and BDNF expression in the hippocampus [J]. International Journal of Molecular Sciences, 2022, 23(23): 14575. DOI: 10.3390/ijms232314575.
    [25] LE TRAN N, WANG Y, NIE G Y. Podocalyxin in normal tissue and epithelial cancer [J]. Cancers, 2021, 13(12): 2863. DOI: 10.3390/CANCERS13122863.
    [26] MEHLIG K, FORAITA R, NAGRANI R, et al. Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICS/I. Family children's cohort [J]. Diabetologia, 2023, 66(10): 1914–1924. DOI: 10.1007/s00125-023-05957-w.
    [27] SANDERS S S, HERNANDEZ L M, SOH H, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment [J]. eLife, 2020, 9: e56058. DOI: 10.7554/eLife.56058.
    [28] NIEVERGELT C M, MAIHOFER A X, KLENGEL T, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci [J]. Nature Communications, 2019, 10(1): 4558. DOI: 10.1038/s41467-019-12576-w.
    [29] PARTHASARATHY R, SANTIAGO F, MCCLUSKEY P, et al. The microbiome in HLA-B27-associated disease: implications for acute anterior uveitis and recommendations for future studies [J]. Trends in Microbiology, 2023, 31(2): 142–158. DOI: 10.1016/j.tim.2022.08.008.
    [30] ZHANG X Y, HAN Y, LIU X H, et al. Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): a systematic review and meta-analysis [J]. Journal of Affective Disorders, 2023, 328: 312–323. DOI: 10.1016/j.jad.2023.02.001.
    [31] STEIN M B, LEVEY D F, CHENG Z S, et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the million veteran program [J]. Nature Genetics, 2021, 53(2): 174–184. DOI: 10.1038/s41588-020-00767-x.
    [32] POLIMANTI R, WENDT F R. Posttraumatic stress disorder: from gene discovery to disease biology [J]. Psychological Medicine, 2021, 51(13): 2178–2188. DOI: 10.1017/S0033291721000210.
    [33] DEL CASALE A, FERRACUTI S, BARBETTI A S, et al. Grey matter volume reductions of the left hippocampus and amygdala in PTSD: a coordinate-based meta-analysis of magnetic resonance imaging studies [J]. Neuropsychobiology, 2022, 81(4): 257–264. DOI: 10.1159/000522003.
    [34] CHEN L W, SUN D L, DAVIS S L, et al. Smaller hippocampal CA1 subfield volume in posttraumatic stress disorder [J]. Depression and Anxiety, 2018, 35(11): 1018–1029. DOI: 10.1002/da.22833.
    [35] MOREY R A, CLARKE E K, HASWELL C C, et al. Amygdala nuclei volume and shape in military veterans with posttraumatic stress disorder [J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5(3): 281–290. DOI: 10.1016/j.bpsc.2019.11.016.
    [36] SZESZKO P R, BIERER L M, BADER H N, et al. Cingulate and hippocampal subregion abnormalities in combat-exposed veterans with PTSD [J]. Journal of Affective Disorders, 2022, 311: 432–439. DOI: 10.1016/j.jad.2022.05.081.
    [37] ALEXANDRA KREDLOW M, FENSTER R J, LAURENT E S, et al. Prefrontal cortex, amygdala, and threat processing: implications for PTSD [J]. Neuropsychopharmacology, 2022, 47(1): 247–259. DOI: 10.1038/s41386-021-01155-7.
    [38] HINOJOSA C A, GEORGE G C, BEN-ZION Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field [J]. Molecular Psychiatry, 2024, 29(10): 3223–3244. DOI: 10.1038/S41380-024-02558-W.
    [39] AKIKI T J, AVERILL C L, WROCKLAGE K M, et al. The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities [J]. Chronic Stress, 2017(1): 2470547017724069. DOI: 10.1177/2470547017724069.
    [40] MISAKI M, PHILLIPS R, ZOTEV V, et al. Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: a connectome-wide investigation [J]. NeuroImage: Clinical, 2018, 20: 543–555. DOI: 10.1016/j.nicl.2018.08.025.
    [41] HARIS E M, BRYANT R A, WILLIAMSON T, et al. Functional connectivity of amygdala subnuclei in PTSD: a narrative review [J]. Molecular Psychiatry, 2023, 28(9): 3581–3594. DOI: 10.1038/s41380-023-02291-w.
    [42] NICHOLSON A A, RABELLINO D, DENSMORE M, et al. Intrinsic connectivity network dynamics in PTSD during amygdala downregulation using real-time fMRI neurofeedback: a preliminary analysis [J]. Human Brain Mapping, 2018, 39(11): 4258–4275. DOI: 10.1002/hbm.24244.
    [43] MISAKI M, PHILLIPS R, ZOTEV V, et al. Brain activity mediators of PTSD symptom reduction during real-time fMRI amygdala neurofeedback emotional training [J]. NeuroImage: Clinical, 2019, 24: 102047. DOI: 10.1016/j.nicl.2019.102047.
    [44] DOSSI G, DELVECCHIO G, PRUNAS C, et al. Neural bases of cognitive impairments in post-traumatic stress disorders: a mini-review of functional magnetic resonance imaging findings [J]. Frontiers in Psychiatry, 2020, 11: 176. DOI: 10.3389/fpsyt.2020.00176.
    [45] JAGGER-RICKELS A, STUMPS A, ROTHLEIN D, et al. Impaired executive function exacerbates neural markers of posttraumatic stress disorder [J]. Psychological Medicine, 2022, 52(16): 3985–3998. DOI: 10.1017/S0033291721000842.
    [46] AKIKI T J, AVERILL C L, ABDALLAH C G. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies [J]. Current Psychiatry Reports, 2017, 19(11): 81. DOI: 10.1007/s11920-017-0840-4.
    [47] KEEFE J R, SUAREZ-JIMENEZ B, ZHU X, et al. Elucidating behavioral and functional connectivity markers of aberrant threat discrimination in PTSD [J]. Depression and Anxiety, 2022, 39(12): 891–901. DOI: 10.1002/da.23295.
    [48] CROZIER J C, WANG L H, HUETTEL S A, et al. Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter? [J]. Development and Psychopathology, 2014, 26(2): 491–513. DOI: 10.1017/S095457941400008X.
    [49] SUO X L, ZUO C, LAN H, et al. Multilayer network analysis of dynamic network reconfiguration in adults with posttraumatic stress disorder [J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8(4): 452–61. DOI: 10.1016/j.bpsc.2022.09.003.
    [50] WANG X, XIE H, CHEN T, et al. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis [J]. Molecular Psychiatry, 2021, 26(8): 4331–4343. DOI: 10.1038/s41380-020-00967-1.
    [51] LOGUE M W, VAN ROOIJ S J H, DENNIS E L, et al. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia [J]. Biological Psychiatry, 2018, 83(3): 244–253. DOI: 10.1016/j.biopsych.2017.09.006.
    [52] DENNIS E L, DISNER S G, FANI N, et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium [J]. Molecular Psychiatry, 2021, 26(8): 4315–4330. DOI: 10.1038/s41380-019-0631-x.
    [53] BEUTLER S, MERTENS Y L, LADNER L, et al. Trauma-related dissociation and the autonomic nervous system: a systematic literature review of psychophysiological correlates of dissociative experiencing in PTSD patients [J]. European Journal of Psychotraumatology, 2022, 13(2): 2132599. DOI: 10.1080/20008066.2022.2132599.
    [54] CAMPBELL A A, WISCO B E, SILVIA P J, et al. Resting respiratory sinus arrhythmia and posttraumatic stress disorder: a meta-analysis [J]. Biological Psychology, 2019, 144: 125–135. DOI: 10.1016/j.biopsycho.2019.02.005.
    [55] CAMPBELL A A, WISCO B E. Respiratory sinus arrhythmia reactivity in anxiety and posttraumatic stress disorder: a review of literature [J]. Clinical Psychology Review, 2021, 87: 102034. DOI: 10.1016/j.cpr.2021.102034.
    [56] SCHNEIDER M, SCHWERDTFEGER A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: a meta-analysis [J]. Psychological Medicine, 2020, 50(12): 1937–1948. DOI: 10.1017/S003329172000207X.
    [57] PARK J E, LEE J Y, KANG S H, et al. Heart rate variability of chronic posttraumatic stress disorder in the Korean veterans [J]. Psychiatry Research, 2017, 255: 72–77. DOI: 10.1016/j.psychres.2017.05.011.
    [58] WILTSHIRE C N, KOURI N, WANNA C P, et al. Resting heart rate associations with violence exposure and posttraumatic stress symptoms: sex differences in children [J]. Biology of Sex Differences, 2024, 15(1): 28. DOI: 10.1186/s13293-024-00606-2.
    [59] SHEIKH S A A, SHAH A J, BREMNER J D, et al. Impedance cardiogram based exploration of cardiac mechanisms in post-traumatic stress disorder during trauma recall [J]. Psychophysiology, 2024, 61(4): e14488. DOI: 10.1111/psyp.14488.
    [60] LORI A, SCHULTEBRAUCKS K, GALATZER-LEVY I, et al. Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development [J]. Neuropsychopharmacology, 2021, 46(10): 1811–1820. DOI: 10.1038/s41386-021-01073-8.
    [61] CHEVALIER C M, KRAMPERT L, SCHRECKENBACH M, et al. MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: Evidence from mice and humans [J]. European Neuropsychopharmacology, 2021, 51: 20–32. DOI: 10.1016/j.euroneuro.2021.04.014.
    [62] VISHNOI A, RANI S. miRNA biogenesis and regulation of diseases: an updated overview [M]//RANI S. MicroRNA Profiling: Methods and Protocols. New York: Springer, 2023: 1-12. DOI: 10.1007/978-1-0716-2823-2_1.
    [63] DIENER C, KELLER A, MEESE E. Emerging concepts of miRNA therapeutics: from cells to clinic [J]. Trends in Genetics, 2022, 38(6): 613–626. DOI: 10.1016/j.tig.2022.02.006.
    [64] DU X Z, LV J Z, FENG J P, et al. Plasma exosomes lncRNA-miRNA-mRNA network construction and its diagnostic efficacy identification in first-episode schizophrenia [J]. BMC Psychiatry, 2023, 23(1): 611. DOI: 10.1186/s12888-023-05052-9.
    [65] PACCOSI E, PROIETTI-DE-SANTIS L. Parkinson's disease: from genetics and epigenetics to treatment, a miRNA-based strategy [J]. International Journal of Molecular Sciences, 2023, 24(11): 9547. DOI: 10.3390/IJMS24119547.
    [66] GUPTA S, GULERIA R S, SZABO Y Z. MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in veterans [J]. Psychiatry Research, 2021, 305: 114252. DOI: 10.1016/j.psychres.2021.114252.
    [67] BAM M, YANG X, ZUMBRUN E E, et al. Decreased AGO2 and DCR1 in PBMCs from war veterans with PTSD leads to diminished miRNA resulting in elevated inflammation [J]. Translational Psychiatry, 2017, 7(8): e1222. DOI: 10.1038/tp.2017.185.
    [68] MARTIN C G, KIM H, YUN S, et al. Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans [J]. Psychiatry Research, 2017, 251: 261–265. DOI: 10.1016/j.psychres.2017.01.081.
    [69] RIM E Y, CLEVERS H, NUSSE R. The Wnt pathway: from signaling mechanisms to synthetic modulators [J]. Annual Review of Biochemistry, 2022, 91: 571–598. DOI: 10.1146/annurev-biochem-040320-103615.
    [70] ASLEH K, DERY V, TAYLOR C, et al. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology [J]. Biomarker Research, 2023, 11(1): 99. DOI: 10.1186/s40364-023-00540-2.
    [71] BERUMEN SÁNCHEZ G, BUNN K E, PUA H H, et al. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease [J]. Cell Communication and Signaling, 2021, 19(1): 104. DOI: 10.1186/s12964-021-00787-y.
    [72] GARCIA-MARTIN R, WANG G X, BRANDÃO B B, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention [J]. Nature, 2022, 601(7893): 446–451. DOI: 10.1038/s41586-021-04234-3.
    [73] GUEDES V A, LAI C, DEVOTO C, et al. Extracellular vesicle proteins and MicroRNAs are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury [J]. Frontiers in Pharmacology, 2021, 12: 745348. DOI: 10.3389/fphar.2021.745348.
    [74] LEE M Y, BAXTER D, SCHERLER K, et al. Distinct profiles of cell-free MicroRNAs in plasma of veterans with post-traumatic stress disorder [J]. Journal of Clinical Medicine, 2019, 8(7): 963. DOI: 10.3390/jcm8070963.
    [75] ZHANG L, HU X Z, LI X X, et al. Potential chemokine biomarkers associated with PTSD onset, risk and resilience as well as stress responses in US military service members [J]. Translational Psychiatry, 2020, 10(1): 31. DOI: 10.1038/s41398-020-0693-1.
    [76] XU M, LIN Z Q, SIEGEL C E, et al. Screening for PTSD and TBI in veterans using routine clinical laboratory blood tests [J]. Translational Psychiatry, 2023, 13(1): 64. DOI: 10.1038/s41398-022-02298-x.
    [77] MENG X, LIU D, GUAN Y. Advances in the application of label-free quantitative proteomics techniques in malignancy research [J]. Biomedical Chromatography, 2023, 37(7): e5667. DOI: 10.1002/bmc.5667.
    [78] MUHIE S, GAUTAM A, YANG R T, et al. Molecular signatures of post-traumatic stress disorder in war-zone-exposed veteran and active-duty soldiers [J]. Cell Reports Medicine, 2023, 4(5): 101045. DOI: 10.1016/j.xcrm.2023.101045.
    [79] KUAN P F, CLOUSTON S, YANG X H, et al. Molecular linkage between post-traumatic stress disorder and cognitive impairment: a targeted proteomics study of world trade center responders [J]. Translational Psychiatry, 2020, 10(1): 269. DOI: 10.1038/s41398-020-00958-4.
    [80] WASZCZUK M A, KUAN P F, YANG X H, et al. Discovery and replication of blood-based proteomic signature of PTSD in 9/11 responders [J]. Translational Psychiatry, 2023, 13(1): 8. DOI: 10.1038/s41398-022-02302-4.
    [81] ROBLES T F, RÜNGER D, SUMNER J A, et al. Salivary inflammatory biomarkers as a predictor of post-traumatic stress disorder and depressive symptom severity in trauma patients: a prospective study [J]. Brain, Behavior, and Immunity, 2024, 119: 792–800. DOI: 10.1016/j.bbi.2024.05.011.
    [82] ESWARAPPA M, NEYLAN T C, WHOOLEY M A, et al. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: a prospective analysis from the mind your heart study [J]. Brain, Behavior, and Immunity, 2019, 75: 220–227. DOI: 10.1016/j.bbi.2018.10.012.
    [83] KIM B K, FONDA J R, HAUGER R L, et al. Composite contributions of cerebrospinal fluid GABAergic neurosteroids, neuropeptide Y and interleukin-6 to PTSD symptom severity in men with PTSD [J]. Neurobiology of Stress, 2020, 12: 100220. DOI: 10.1016/j.ynstr.2020.100220.
  • 加载中
计量
  • 文章访问数:  20
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-04
  • 修回日期:  2024-10-13
  • 网络出版日期:  2024-10-18

目录

    /

    返回文章
    返回