破碎浮冰环境下结构物倾斜入水空泡演化特性实验研究

杨帅 鹿麟 胡彦晓 杨哲 陈凯敏

杨帅, 鹿麟, 胡彦晓, 杨哲, 陈凯敏. 破碎浮冰环境下结构物倾斜入水空泡演化特性实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0229
引用本文: 杨帅, 鹿麟, 胡彦晓, 杨哲, 陈凯敏. 破碎浮冰环境下结构物倾斜入水空泡演化特性实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0229
YANG Shuai, LU Lin, HU Yanxiao, YANG Zhe, CHEN Kaimin. Experimental study on cavity evolution characteristics of an oblique water-entry structure in the crushed floating ice environment[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0229
Citation: YANG Shuai, LU Lin, HU Yanxiao, YANG Zhe, CHEN Kaimin. Experimental study on cavity evolution characteristics of an oblique water-entry structure in the crushed floating ice environment[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0229

破碎浮冰环境下结构物倾斜入水空泡演化特性实验研究

doi: 10.11883/bzycj-2024-0229
基金项目: 国家自然科学基金(52201385);山西省回国留学人员科研资助项目(2024-114)
详细信息
    作者简介:

    杨 帅(2000- ),男,硕士研究生,yangshuai_@163.com

    通讯作者:

    鹿 麟(1988- ),男,博士,副教授,lulin2016@nuc.edu.com

  • 中图分类号: O354; TJ012.3

Experimental study on cavity evolution characteristics of an oblique water-entry structure in the crushed floating ice environment

  • 摘要: 为探究破碎浮冰覆盖密度对结构物入水空泡演化的影响,利用高速摄影技术开展了不同破碎浮冰覆盖密度下结构物倾斜入水实验。此外,通过对比不同碎冰覆盖密度工况下的结构物倾斜入水过程,获得了碎冰覆盖密度对结构物倾斜入水空泡演化特性的影响规律。结果表明:与无冰环境相比,当空泡扩张时,破碎浮冰通过阻碍液面流体向外扩张,致使空泡的直径减小;而空泡闭合时,碎冰会阻碍液面流体向内收缩,延长空泡扩张时间,此时空泡内空气总量增加,空泡内外压差减小,最终导致空泡的闭合时间延迟。随着碎冰覆盖密度的逐渐增加,其对液面流体向内收缩的阻碍作用逐渐增强,进一步延缓了空泡的闭合时间,空泡的长度和最大直径也相应增大。碎冰覆盖密度较小的工况在空泡溃灭时会出现指向空泡内部的射流。此外,碎冰覆盖密度较大的工况下,流体的无规则冲击使得空泡壁出现褶皱。随着结构物入水深度的增加,空泡在环境压力作用下会出现深颈缩现象。随着碎冰覆盖密度的逐渐增大,结构物的水下运动速度相较于无冰环境呈现更快的衰减趋势。
  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of the experimental system

    图  2  破碎浮冰工况示意图

    Figure  2.  Schematic diagram of different crushed ice conditions

    图  3  实验工况示意图

    Figure  3.  Schematic diagram of the experimental conditions

    图  4  空泡扩张阶段空泡演化图

    Figure  4.  Cavity evolution in the water-entry cavity expansion stage

    图  5  空泡收缩阶段的空泡演化图像

    Figure  5.  Cavity evolution in the cavity contraction stage

    图  6  不同入水条件下的流体特征

    Figure  6.  Flow characteristics under different water-entry conditions

    图  7  空泡闭合阶段的空泡演化图像

    Figure  7.  Cavity evolution in the cavity closure stage

    图  8  空泡溃灭阶段的空泡演化图像

    Figure  8.  Cavity evolution in the cavity collapse stage

    图  9  不同工况下的空泡直径变化曲线

    Figure  9.  Variation curves of cavity diameter under different working conditions

    图  10  不同工况下的空泡长度变化曲线

    Figure  10.  Variation curves of cavity length under different working conditions

    图  11  不同工况下的结构物速度变化曲线

    Figure  11.  Velocity decay curves of the structure under different working conditions

  • [1] 张润东, 段金雄, 孙铁志, 等. 自由面碎冰浮冰环境高速入水动力学特性 [J]. 空气动力学学报, 2024, 42(1): 100–112. DOI: 10.7638/kqdlxxb-2023.0191.

    ZHANG R D, DUAN J X, SUN T Z, et al. Dynamic characteristics of high-speed water entry in the environment of free water surface with crushed ice [J]. Acta Aerodynamica Sinica, 2024, 42(1): 100–112. DOI: 10.7638/kqdlxxb-2023.0191.
    [2] 张军, 蔡晓伟, 宣建明, 等. 弹体穿越冰水混合物流动过程的数值模拟 [J]. 弹道学报, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X( 2020)03-008. DOI: 10.12115/j.issn.1004-499X(2020)03-008.

    ZHANG J, CAI X W, XUAN J M, et al. Numerical simulation of flow filed of projectile passing through ice water mixture [J]. Journal of Ballistics, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X(2020)03-008.
    [3] 闫雪璞. 浮冰扰动下结构物入水空泡演化及运动特性研究 [D]. 太原: 中北大学, 2024. DOI: 10.27470/d.cnki.ghbgc.2023.001239.

    YAN X P. Study on cavity evolution and motion characteristics of water-entry of the structure under the disturbance of floating ice [J]. Taiyuan: North University of China, 2024. DOI: 10.27470/d.cnki.ghbgc.2023.001239.
    [4] 蔡晓伟, 宣建明, 王宝寿, 等. 细长体穿越冰-水混合物的出水流场数值模拟 [J]. 兵工学报, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012.

    CAI X W, XUAN J M, WANG B S, et al. Numerical simulation of thin body passing through the ice-water mixture flow field [J]. Acta Armamentarii, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012.
    [5] 杨哲, 鹿麟, 李强, 等. 冰孔约束下圆柱体倾斜入水空泡演化与流场特性数值模拟 [J/OL]. 兵工学报, (2024-01-17) [2024-06-30]. http://kns.cnki.net/kcms/detail/11.2176.TJ.20240119.1434.008.html. DOI: 10.12382/bgxb.2023.0969.

    YANG Z, LU L, LI Q, et al. Numerical simulation on cavity evolution and flow field characteristics of cylinder inclined into water under ice hole constraint [J/OL]. Acta Armamentarii, (2024-01-17) [2024-06-30]. http://kns.cnki.net/kcms/detail/11.2176.TJ.20240119.1434.008.html. DOI: 10.12382/bgxb.2023.0969.
    [6] 张东晓, 鹿麟, 闫雪璞, 等. 冰孔约束条件下的弹丸倾斜入水实验研究 [J]. 爆炸与冲击, 2023, 43(10): 103304. DOI: 10.11883/bzycj-2023-014.

    ZHANG D X, LU L, YAN X P, et al. Eхperimental study on oblique water-entry of projectile constrained by ice hole [J]. Explosion and Shock Waves, 2023, 43(10): 103304. DOI: 10.11883/bzycj-2023-014.
    [7] LU L, ZHANG D X, QI X B, et al. Experimental investigation on the cavity evolution characteristics of the high-speed cylinder passing through the ice-hole [J]. Ocean Engineering, 2024, 295: 116940. DOI: 10.1016/J.OCEANENG.2024.116940.
    [8] TANG E L, ZHANG Z, CHEN C, et al. Dynamic response of slender body passing through ice and water mixture at high velocity [J]. Journal of Mechanics, 2022, 38: 257–266. DOI: 10.1093/jom/ufac016.
    [9] HU X Y, WEI Y J, WANG C, et al. Cavity dynamics of the projectile passing through the ice hole [J]. Journal of Applied Physics, 2023, 133(11): 114702. DOI: 10.1063/5.0142204.
    [10] WANG H, HUANG Z G, HUANG D, et al. Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds [J]. Ocean Engineering, 2022, 265: 112548. DOI: 10.1016/J.OCEANENG.2022.112548.
    [11] YOU C, SUN T Z, ZHANG G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder [J]. Ocean Engineering, 2022, 245: 110443. DOI: 10.1016/j.oceaneng.2021.110443.
    [12] GAO C S, LU L, HU Y X, et al. Numerical study on the multiphase flow field of water-entry structure under floating ice environment [J]. Beijing: 17th Asian Congress of Fluid Mechanics. 2023. DOI: 10.1049/icp.2023.1937.
    [13] 张健宇. 航行体冰环境约束出水空泡演化及载荷特性研究 [D]. 大连: 大连理工大学, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002905.

    ZHANG J Y. Study on cavity evolution and load characteristics of water exit of underwater vehicle constrained by ice environment [D]. Dalian: Dalian University of Technology, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002905.
    [14] 张松, 林威, 孙铁志, 等. 碎冰环境下通气航行体出水流场演化及载荷特性研究 [J]. 中国造船, 2024, 65(2): 155–166. DOI: 10.3969/j.issn.1000-4882.2024.02.013.

    ZHANG S, LIN W, SUN T, et al. Study on the evolution of flow field and load characteristics of ventilated water-exit vehicle in crushed ice environment [J]. Ship Building of China, 2024, 65(2): 155–166. DOI: 10.3969/j.issn.1000-4882.2024.02.013.
  • 加载中
图(11)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  9
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 修回日期:  2024-09-02
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回