Acceleration response test and damage analysis of dummy head under explosion shock wave
-
摘要: 为了研究爆炸冲击波作用下人体头部的加速度响应、建立加速度与爆炸冲击波超压的内在联系、评价基于加速度参数的头部损伤评估指标,利用标准人体参数的假人模型开展了多种TNT当量的空中静爆试验,获得了不同比例距离下模型头部的加速度时程曲线以及同距离处的自由场超压曲线。基于峰值线性加速度、头部损伤标准(head injury criterion, HIC)和头部撞击功率(head impact power, HIP)定量分析了头部损伤的风险等级,评价3种损伤评估指标在爆炸场景下的适用性和有效性。结果显示,距爆心4.2 m处的假人头部加速度随TNT当量的增加而迅速增大,TNT质量在1~4 kg范围内,正对爆心方向峰值加速度由16.29g增大至70.11g;在本次试验工况下,3种评估指标预测轻度脑损伤(mild traumatic brain injury, mTBI)风险最大依次为25%、10%和5%,其中HIP指标评估的头部轻度损伤风险偏低;当3种评估指标达到头部严重损伤阈值时,对应的峰值超压依次为0.322、0.300和0.332 MPa,其中HIC指标对应的峰值超压最低,表明其预测头部严重损伤的敏感性最强。Abstract: In military operations, terrorist attacks, accidents and other situations, blast injury has become the main mode of casualties, among which the proportion of blast-induced traumatic brain injury (bTBI) has increased significantly, but the specific injury mechanism is still unclear. In order to obtain the acceleration response of human head under the action of explosion shock wave, establish the internal relationship between acceleration and explosion shock wave overpressure, and evaluate the head injury evaluation criteria based on acceleration parameters, this study carried out the air static explosion test of various TNT equivalent spherical charges by using the dummy model with standard body level, on which the acceleration time history curves and the free field overpressure curves of the model head at different scaled distances were obtained. Based on peak linear acceleration, head injury criterion (HIC) and head impact power (HIP), the risk level of head injury was quantitatively analyzed, and the applicability and effectiveness of the three injury assessment indexes were evaluated in the explosion scene. The results show that the acceleration of the dummy head at 4.2 m from the detonation center increases rapidly with the increase of TNT equivalent. In the range from 1 to 4 kg TNT mass, the peak acceleration in the direction of detonation increases from 16.29g to 70.11g. The peak acceleration in each direction is linearly correlated with the peak overpressure. Under the experimental conditions, the maximum risk of mild traumatic brain injury (mTBI) predicted by the three evaluation indexes was 25%, 10%, and 5%, where HIP index evaluated the lower risk of mTBI. When the three evaluation indexes reached the threshold of severe head injury, the corresponding peak overpressure was 0.322, 0.300 and 0.332 MPa, respectively. The peak overpressure corresponding to the HIC index was the lowest, indicating that it had the strongest sensitivity to predict severe head injury.
-
Key words:
- explosion shock wave /
- acceleration response /
- head injury criterion /
- injury assessment
-
在军事行动、恐怖袭击、意外事故等情形中,爆炸伤已成为人员伤亡的主要模式[1]。除了眼眶、听器及肺脏等空腔脏器容易遭受爆炸冲击波的直接损害外,爆炸引起的创伤性脑损伤(blast-induced traumatic brain injury, bTBI)的比例显著上升,引起了广泛关注[2-5]。2000-2020年,约43万名美国军人确诊创伤性脑损伤[6];在国际恐怖袭击事件中,爆炸袭击为最主要的形式之一,约占29%[7];2019年江苏响水“3·21”化工厂特大爆炸事故造成了78人遇难,640人受伤[8]。此外,bTBI不仅导致脑组织挫伤、轴突弥漫性损伤等原发性损伤,也会引起焦虑、易怒、睡眠障碍和抑郁等继发性损害,严重影响伤者的身心健康。因此,研究爆炸冲击波的头部致伤机制,通过可测物理量预测爆炸事件中头部损伤等级具有重要意义。
原发性脑损伤的力学机制复杂且影响因素较多,研究人员提出了爆炸冲击波直接作用[9-10]、颅骨弯曲变形[11-12]、空化效应[13-14]、胸腔压迫[15]和爆炸产生的加速度[16-18]等多种作用机制,利用模型试验和仿真计算的方法研究爆炸脑损伤的致伤机理。其中,宏观尺度的加速度损伤机制重点关注头部的线性加速度和旋转加速度,由于惯性作用,脑组织和颅骨间发生相对运动,从而导致脑组织挫伤和轴突弥漫性损伤。Gullotti等[16]通过大鼠试验发现,在相同爆炸条件下,头部加速度降低使大鼠神经元损伤减轻。Mao等[17]通过有限元仿真手段,将大鼠头部定义为刚性材料以获取加速度引起头部的力学响应,发现加速度单独作用可产生显著的颅内压。除了动物试验和计算模型外,Du等[18]和Sarvghad-Moghaddam等[19]建立了人体颅脑有限元模型研究以加速度为主导的损伤模式,发现爆炸加速度与颅内压、最大剪应力、最大主应变以及轴突应变率有密切联系。
虽然爆炸加速度引起的bTBI的确切机制尚不清楚,但其可作为评价爆炸脑损伤严重程度的预测指标。在运动学和汽车碰撞领域,许多损伤评估指标基于头部的运动加速度,如基于线性加速度的头部损伤标准(head injury criterion, HIC)[20]、考虑脑损伤耐受力的广义加速度模型(generalized acceleration model for brain injury tolerance, GAMBIT)[21]、头部撞击功率(head impact power, HIP)[22]、基于角速度和角加速度的大脑旋转损伤标准(brain rotation injury criterion, BRIC)[23]和基于累积角加速度的旋转损伤标准(rotation injury criterion, RIC)[24]。Lockhart等[25]利用爆炸试验数据中的峰值加速度和HIC,对爆炸载荷下的人体数值模型进行了验证,结果表明爆炸载荷可产生显著的加速度响应和潜在的头部损伤。Shridharani等[26]开展了一系列激波管加载猪头试验,发现头部峰值加速度和HIC值的对数形式与峰值入射超压有良好的线性相关性。Singh等[27]通过建立爆炸-头部耦合模型对比头部矢状面和横切面的头部响应,发现横切面的运动学参数以及HIC值略高于矢状面。
综上所述,人体头部作为极易遭受爆炸伤害的靶目标,其爆炸致伤机制及损伤预测判定备受关注。然而,以往的研究大多是采用动物或头部模型试验,忽略了人体总质量以及头-颈连接对加速度测量的影响。本研究旨在运用标准人体参数的假人模型开展静爆试验,通过测量不同比例距离下假人头部经历的加速度响应,探索头部加速度与爆炸参数的内在联系。基于峰值线性加速度、HIC和HIP损伤评估指标和冲击波对人员损伤判据,对比分析试验工况下的头部损伤风险等级,评价基于加速度参数的头部损伤预测方法的适用性和有效性,以期为爆炸加速度引起的头部损伤评估提供参考。
1. 试验方案
1.1 假人模型
静爆试验选用消防训练假人作为被测对象以模拟标准人体,假人净身高165 cm、质量60 kg,表面为防爆PU材质,内部由碎布和沙袋填充,假设为等密度体。假人头部、躯干部分和腿部分别近似为
∅ 18 cm×21 cm、∅ 34 cm×60 cm、∅ 17 cm×84 cm的圆柱体,假人头部质量约占整体质量的7.2%,与成年人头部质量占比6.8%[28]接近。爆炸试验中,将假人模型放置于高度可调节的定位装置上,以支撑模型保持自由站立姿态且使待测部位所在平面尽可能与地面保持垂直,如图1所示,铝合金支架高170 cm、宽70 cm,横梁高度115 cm与假人模型手臂高度相当。当爆炸冲击波作用时,支架允许模型自由向后跌落,模拟假人与地面真实接触条件,使得冲击波作用下假人模型的自由运动模式不被干扰。
1.2 测量设备
假人头部加速度的测量选用扬州科动电子型号KD1020的PE型加速度传感器,测量范围为±500g,频率响应为0.5~4 kHz,工作温度为−40~120 ℃,满足试验工况下的加速度量程及环境温度。为了确保加速度传感器与假人头部刚性附着,利用喉箍标准件将固定在三向块上的加速度传感器栓接在头部冠状面背侧以监测头部的整体运动,如图2(a)所示,其中假人面向爆心为x轴方向,假人与爆心连线的水平垂直方向为y轴方向,与地面垂直的假人体长方向为z轴方向。
自由场冲击波超压的测量选用PCB型号137B21B的IEPE型压力传感器,测量范围为±6.7 MPa、分辨率为0.059 kPa、工作温度为−73~135 ℃。将压力传感器布设在假人与爆心相同距离的空旷位置,防止冲击波反射和绕射影响测量信号,如图2(b)所示。所有传感器均通过屏蔽电缆线与东华测试DH5960型数据采集仪连接,数据采集仪的采样频率设置为1 MHz,触发模式为负延时500 ms的通道触发,以保证获取的信号完整可靠。
1.3 试验工况
本次爆炸试验中采用TNT球形装药方式,其炸高设定为1.5 m,与加速度传感器和压力传感器固定安装高度一致,确保测试数据准确性。表1展示了8发静爆试验工况,TNT药量分别为1、2、3和4 kg,每种药量均重复进行2次试验,以增强试验结果的可靠性。基于爆炸冲击波对人员损伤的超压判据[29]和峰值超压经验公式[30],设置假人模型和自由场压力测点距爆心均为4.2 m(图2(c)),随着TNT当量的逐级递增,理论超压分别为0.045、0.068、0.089和0.108 MPa,对应的人员损伤程度为出现听觉器官损伤等的轻度损伤[29]。
表 1 试验工况Table 1. Test conditions试验编号 TNT质量/
kg测试距离/
m比例距离/
(m∙kg−1/3)理论超压/
MPa1#,4# 1 4.2 4.20 0.045 2#,7# 2 4.2 3.33 0.068 3#,5# 3 4.2 2.91 0.089 6#,8# 4 4.2 2.65 0.108 2. 试验结果与分析
2.1 自由场压力
TNT炸药由雷管引爆后,产生的爆炸冲击波迅速在空气中传播,掠过自由场传感器的敏感面并通过数据采集仪输出压力信号,图3给出了不同TNT当量下PCB传感器获取的爆炸自由场压力时程曲线。由图3可见,爆炸试验测得的实际超压在0.044~0.120 MPa之间,与预估超压范围接近。可以看出,在相同TNT当量下,传感器测量的峰值超压、正压持续时间接近,表明传感器测量的一致性和可靠性较好。同时,随着当量增加,冲击波的到达时间越早、峰值超压越高,峰值超压均值由0.046 MPa急剧增大到0.118 MPa。此外,可以观察到每一发试验测量的超压时程曲线中均存在双峰值的情况。这是由于,冲击波传播到地面后发生反射,反射冲击波经过压力传感器形成第2道压力峰值,Qi等[31]在试验中也观察到了这一现象,在试验中将压力传感器的敏感面朝上以尽量降低反射波的影响。
根据萨道夫斯基经验公式[30],空气中爆炸冲击波峰值压力可表示为:
pm=0.084(3√WL)+0.27(3√WL)2+0.7(3√WL)3 (1) 式中:pm为爆炸冲击波峰值压力,MPa;W为TNT当量,kg;L为被测点与爆心的距离,m。
图4展示了爆炸试验中测得的冲击波峰值压力与理论公式的对比。可以看出,试验值与理论曲线吻合程度较高,测得的试验值总体高于理论值,与理论曲线的最大误差δ不超过13.3%,进而验证了自由场压力测试的可靠性。
2.2 加速度响应
爆炸冲击波压力引起假人整体和局部运动的加速度,在毫秒时间尺度诱发原发性脑损伤;此后,由于人体惯性运动引起头部旋转和撞击地面发生的继发性脑损伤的时间尺度分别在百毫秒和秒量级[32],在本次试验研究中重点关注由加速度主导的原发性脑损伤。在汽车工业领域,头部损伤标准(HIC)由1 650 Hz以下的低频加速度决定,但爆炸载荷往往能够引起更高频率的加速度响应且对头部损伤影响更大[33]。根据加速度传感器
4000 Hz的频率响应滤波加速度信号如图5~8所示。由图5~8可以看出,模型头部的加速度响应为连续的振荡信号,在相同比例距离下,x、y和z等3个方向的加速度振荡趋势一致,且峰值加速度值接近,表明重复试验结果的一致性较好。随着TNT当量的增加,峰值加速度有上升的趋势。此外,经过分析自由场冲击波测量结果,在本文所开展的试验工况下冲击波掠过假人头部的时间非常短(在0.5 ms以内),而从加速度曲线存在的明显周期性振荡(周期在15 ms左右)来看,试验测量的加速度反映的是假人头部的整体加速度。图9对比了不同TNT当量下各轴向的峰值加速度,可以看出,各轴向峰值加速度随TNT当量增大而急剧升高,x轴方向峰值加速度由最小16.29g升高到最大70.11g,除4 kg TNT当量下x轴的峰值加速度差异较大外,相同爆炸条件下同轴向加速度的标准差均在4.71g以下。为理清爆炸冲击波作用下头部加速度与入射超压之间的联系,提取各个工况下测得的峰值加速度和峰值超压并绘出关系图如图10所示。可以发现,排除异常数据后,x和z轴方向的峰值加速度与峰值超压的线性相关性较强(R2>0.92),而y轴方向的相关性较弱。此外,正对爆心方向(x轴)峰值加速度关于超压的敏感性最强,表明爆炸冲击波作用在假人头部时,对迎爆面方向的加速度贡献最大。
2.3 头部损伤分析
在当前研究中,爆炸环境下加速度引起的头部损伤评估缺乏统一的判定标准,本文中结合爆炸试验数据,通过峰值线性加速度、头部损伤标准(HIC)、头部撞击功率(HIP)等基于平动加速度的损伤评估指标开展头部损伤分析。
线性加速度是用于头部损伤风险评估和防护装备安全性评估的最基本运动学参数,峰值线性加速度指标来源于体育赛事中的损伤研究,该指标是忽略加速度持续影响时间、考虑所有方向的总加速度,但峰值线性加速度的评判标准给出了持续时间的限制,持续时间一般为3 ms以上:
am={√a2x+a2y+a2z}max (2) 式中:ax、ay和az为沿假人头部局部坐标系三轴的线加速度分量。头部严重损伤阈值am为200g(持续时间长于2 ms)[20]。
HIC是基于线性加速度的头部损伤评估指标,区别于仅考虑加速度峰值的判据,其考虑了加速度场的持续作用,记HIC值为γ,可由下式[20]计算:
γn={(t2−t1)[1t2−t1∫t2t1a(t)dt]2.5}max (3) 式中:n为积分的持续时间,t1和t2分别为积分的起止时间,a(t)为加速度关于时间的函数。γ取加速度积分的最大值,本研究中n取15 ms,头部严重损伤阈值为700[20]。
HIP是一种综合运动头部损伤指标,其假设头部损伤严重程度与头部受到的撞击功率有关,定义为具有质量和转动惯性刚体的动能变化率,HIP值记为η,可由下式[22]计算:
η=max∫axdt+may∫aydt+maz∫azdt+Ixxαx∫αxdt+Iyyαy∫αydt+Izzαz∫αzdt (4) 式中:η为HIP计算值,αx、αy和αz为同坐标系下三轴的角加速度分量,m为假人头部质量,Ixx、Iyy和Izz为三轴的转动惯量。由式(4)可知,η是一个随时间变化的物理量,损伤评估阈值取最大值ηm,头部严重损伤阈值为30 kW[22]。
根据加速度测试结果与假人模型头部尺寸(头部质量m=4.32 kg, Ixx=
0.0246 , Iyy=0.0246 , Izz=0.0175 ),表2总结了不同工况下各损伤评估指标的特征值,am、γ15和ηm的范围分别为22.51g~71.41g, 4.66~81.46, 0.91~6.26 kW。本次工况下计算的各指标特征值远小于严重损伤阈值,因此根据文献[22, 34-35]列举了各损伤评估指标关于轻度创伤型脑损伤(mTBI)的损伤风险阈值如表3所示。表 2 不同工况下各损伤评估指标的特征值Table 2. Characteristic values of injury assessment indii under different conditions试验编号 TNT质量/kg 比例距离/(m∙kg−1/3) 峰值超压/MPa am/g γ15 ηm/kW 1# 1 4.20 0.0486 22.77 4.66 1.30 2# 2 3.33 0.0693 39.70 28.30 2.60 3# 3 2.91 0.0984 58.68 45.92 3.97 4# 1 4.20 0.0443 22.51 6.81 0.91 5# 3 2.91 0.0956 64.62 51.14 4.35 6# 4 2.65 0.1161 71.41 81.46 6.26 7# 2 3.33 0.0775 38.54 23.98 2.50 8# 4 2.65 0.1199 61.77 57.53 5.27 图11为各工况下总加速度的时程曲线,可以发现总加速度的第一峰值均发生在5 ms以内,而后加速度经历先下降后陡然上升,在10 ms左右达到第2峰值,这与自由场冲击波超压的规律一致,第2峰值是地面反射冲击波所致。此外,除比例距离4.2 m/kg1/3条件下的最大加速度为第1峰值外,其余工况下的第2峰值为最大值且持续时间更长。图12为峰值线性加速度随峰值超压的变化,从图中可以看出,总加速度峰值亦与峰值超压呈线性关系,峰值超压小于0.07 MPa时的轻度头部损伤风险低于5%,峰值超压大于0.09 MPa时的轻度头部损伤风险高于10%,本次试验工况下最高损伤风险高于25%。
图13展示了HIC15值与比例距离的关系,HIC15与比例距离按幂函数拟合效果较好。可以看出,随着比例距离的降低快速增大,比例距离由4.20 m/kg1/3减小至2.65 m/kg1/3时,HIC15平均增大了12倍,最大值81.46远低于FMVSS目录中规定的头部严重损伤阈值700[20]。在相同比例距离下,以HIC15的平均值为参考进行误差分析,误差在±5.0%以内,表明相同工况下的一致性较好。由图14可知,HIC15随自由场峰值超压呈指数形式上升,峰值超压在0.05~0.10 MPa之间时,轻度头部损伤风险为5%,对应的超压损伤判据为出现耳膜破裂;当峰值超压超过0.103 5 MPa时,轻度头部损伤风险为10%,对应的超压损伤判据为50%耳膜破裂。
根据式(4)绘制出HIP的时程曲线如图15所示,HIP曲线随时间总体呈先上升后下降的趋势,且相同工况下的吻合程度较高,HIP峰值时间与总加速度时程曲线的第二峰值时间相近。根据η最大值HIPm随峰值超压的变化关系(图16)可以发现,HIPm随峰值超压呈二次项上升的关系。当峰值超压小于0.1 MPa时,HIPm均未达到5%轻度损伤风险阈值4.7 kW,本次工况下HIPm最大为6.26 kW,亦低于10%轻度损伤风险阈值。与冲击波超压损伤判据相比,HIP评估指标在针对峰值超压低于0.12 MPa的爆炸环境下,表现出较低的灵敏度以及风险等级。
根据冲击波超压对人员的损伤判据[29],死亡率1%和50%的超压范围分别为0.138~0.241 MPa和0.276~0.345 MPa,结合上述3种损伤评估指标与峰值超压的拟合公式,绘制出不同指标预测此超压范围内的头部损伤风险如图17所示。可以看出,在死亡率1%的超压范围内,峰值线性加速度指标预测的轻度损伤风险由50%快速上升至80%,而HIC和HIP指标预测的轻度损伤风险经历25%后缓慢上升至75%。这表明峰值线性加速度指标预测此超压范围内的损伤风险相对较高。当3种评估指标达到头部严重损伤阈值时,对应的峰值超压依次为0.322、0.300和0.332 MPa,均分布在死亡率50%的超压范围内,其中HIC指标下的峰值超压最低,表明HIC指标预测头部严重损伤的敏感性最强,与超压损伤判据的一致性较高。
3. 结 论
通过球形TNT装药静爆试验,研究了爆炸冲击波作用下假人模型头部的加速度响应及其与冲击波超压的内在联系,基于峰值线性加速度、HIC和HIP评估指标分析了爆炸加速度引起的头部损伤风险,得到的主要结论如下。
(1)自由场爆炸产生的冲击波峰值超压的试验值和理论曲线吻合较好,试验值略高于理论值但误差在13.3%以内。随着TNT当量的增加,x轴方向峰值加速度由最小16.29g升高到最大70.11g。各方向的峰值加速度与峰值超压呈良好的线性关系,x轴方向峰值加速度关于超压的敏感性最强,爆炸冲击波对迎爆面方向的加速度贡献最大。
(2)试验工况下,总加速度峰值随峰值超压线性增大,轻度损伤风险最高为25%;HIC15随峰值超压呈指数形式上升,0.05~0.10 MPa超压的轻度损伤风险为5%,超过
0.1035 MPa超压的轻度损伤风险为10%;HIPm随峰值超压呈二次项上升关系,当峰值超压低于0.1 MPa时,头部轻度损伤风险低于5%,表现出较低的灵敏度及风险等级。(3)在更严重损伤程度的超压范围内,各损伤评估指标与峰值超压的拟合关系具有良好的适用性。在0.138~0.241 MPa的超压范围内,HIC和HIP指标的轻度损伤风险经历25%后缓慢上升至75%,峰值线性加速度指标预测的损伤风险相对较高。加速度类型指标预测头部严重损伤对应的峰值超压依次为0.322、0.300和0.332 MPa,其中HIC指标下的峰值超压更接近50%死亡率的起始阈值,表明其预测头部严重损伤的效果较好。
-
表 1 试验工况
Table 1. Test conditions
试验编号 TNT质量/
kg测试距离/
m比例距离/
(m∙kg−1/3)理论超压/
MPa1#,4# 1 4.2 4.20 0.045 2#,7# 2 4.2 3.33 0.068 3#,5# 3 4.2 2.91 0.089 6#,8# 4 4.2 2.65 0.108 表 2 不同工况下各损伤评估指标的特征值
Table 2. Characteristic values of injury assessment indii under different conditions
试验编号 TNT质量/kg 比例距离/(m∙kg−1/3) 峰值超压/MPa am/g γ15 ηm/kW 1# 1 4.20 0.0486 22.77 4.66 1.30 2# 2 3.33 0.0693 39.70 28.30 2.60 3# 3 2.91 0.0984 58.68 45.92 3.97 4# 1 4.20 0.0443 22.51 6.81 0.91 5# 3 2.91 0.0956 64.62 51.14 4.35 6# 4 2.65 0.1161 71.41 81.46 6.26 7# 2 3.33 0.0775 38.54 23.98 2.50 8# 4 2.65 0.1199 61.77 57.53 5.27 -
[1] 柳占立, 杜智博, 张家瑞, 等. 颅脑爆炸伤致伤机制及防护研究进展 [J]. 爆炸与冲击, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.LIU Z L, DU Z B, ZHANG J R, et al. Progress in the mechanism and protection of blast-induced traumatic brain injury [J]. Explosion and Shock Waves, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053. [2] KEMPURAJ D, MOHAN R R. Blast injury: impact to the cornea [J]. Experimental Eye Research, 2024, 244: 109915. DOI: 10.1016/j.exer.2024.109915. [3] DEBENHAM L, KHAN N, NOUHAN B, et al. A systematic review of otologic injuries sustained in civilian terrorist explosions [J]. European Archives of Oto-Rhino-Laryngology, 2024, 281(5): 2223–2233. DOI: 10.1007/s00405-023-08393-z. [4] 康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521. [5] ROSENFELD J V, MCFARLANE A C, BRAGGE P, et al. Blast-related traumatic brain injury [J]. The Lancet Neurology, 2013, 12(9): 882–893. DOI: 10.1016/S1474-4422(13)70161-3. [6] 蔡志华, 贺葳, 汪剑辉, 等. 爆炸波致颅脑损伤力学机制与防护综述 [J]. 兵工学报, 2022, 43(2): 467–480. DOI: 10.3969/j.issn.1000-1093.2020.02.025.CAI Z H, HE W, HUANG J H, et al. Review on mechanical mechanism of blast-induced traumatic brain injury and protection technology [J]. Acta Armamentarii, 2022, 43(02): 467–480. DOI: 10.3969/j.issn.1000-1093.2020.02.025. [7] National Counterterrorism Center. A chronology of significant international terrorism for 2004 [M]. Washington: National Counterterrorism Center, 2005. [8] 崔蔚. 江苏响水“3·21”特别重大爆炸事故调查与启示 [J]. 消防科学与技术, 2020, 39(4): 570–575. DOI: 10.3969/j.issn.1009-0029.2020.04.039.CUI W. Investigation and inspiration of 3·21 particularly serious explosion in Xiangshui, Jiangsu [J]. Fire Science and Technology, 2020, 39(4): 570–575. DOI: 10.3969/j.issn.1009-0029.2020.04.039. [9] TAYLOR P A, LUDWIGSEN J S, FORD C C. Investigation of blast-induced traumatic brain injury [J]. Brain Injury, 2014, 28(7): 879–895. DOI: 10.3109/02699052.2014.888478. [10] 赵辉, 朱峰. 原发性颅脑冲击伤的生物力学机制 [J]. 创伤外科杂志, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.ZHAO H, ZHU F. The biomechanical mechanism of primary blast brain injury [J]. Journal of Traumatic Surgery, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017. [11] MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702. [12] LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w. [13] GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224. [14] YU X C, WU T C, NGUYEN T T N, et al. Investigation of blast-induced cerebrospinal fluid cavitation: insights from a simplified head surrogate [J]. International Journal of Impact Engineering, 2022, 162: 104146. DOI: 10.1016/j.ijimpeng.2021.104146. [15] CHEN Y, HUANG W. Non-impact, blast-induced mild TBI and PTSD: concepts and caveats [J]. Brain Injury, 2011, 25(7/8): 641–650. DOI: 10.3109/02699052.2011.580313. [16] GULLOTTI D M, BEAMER M, PANZER M B, et al. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury [J]. Journal of Biomechanical Engineering, 2014, 136(9): 091004. DOI: 10.1115/1.4027873. [17] MAO H J, UNNIKRISHNAN G, RAKESH V, et al. Untangling the effect of head acceleration on brain responses to blast waves [J]. Journal of Biomechanical Engineering, 2015, 137(12): 124502. DOI: 10.1115/1.4031765. [18] DU Z B, WANG P, LUO P, et al. Mechanical mechanism and indicator of diffuse axonal injury under blast-type acceleration [J]. Journal of Biomechanics, 2023, 156: 111674. DOI: 10.1016/j.jbiomech.2023.111674. [19] SARVGHAD-MOGHADDAM H, REZAEI A, ZIEJEWSKI M, et al. Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI [J]. Shock Waves, 2017, 27(6): 919–927. DOI: 10.1007/s00193-017-0749-1. [20] VERSACE J. A review of the severity index [C] // Proceeding of the 15th Stapp Car Crash Conference. San Diego: Society of Automotive Engineers, 1971: 771–796. DOI: 10.4271/710881. [21] CAMPOLETTANO E T, GELLNER R A, SMITH E P, et al. Development of a concussion risk function for a youth population using head linear and rotational acceleration [J]. Annals of Biomedical Engineering, 2020, 48: 92–103. DOI: 10.1007/s10439-019-02382-2. [22] NEWMAN J A, SHEWCHENKO N. A proposed new biomechanical head injury assessment function-the maximum power index [R]. SAE Technical Paper, 2000: 362. DOI: 10.4271/2000-01-sc16. [23] TAKHOUNTS E G, HASIJA V, RIDELLA S A, et al. Kinematic rotational brain injury criterion (BRIC) [C]//Proceedings of the 22nd Enhanced Safety of Vehicles Conference. Washington: NHTSA, 2011: 1–10. [24] KIMPARA H, IWAMOTO M. Mild traumatic brain injury predictors based on angular accelerations during impacts [J]. Annals of Biomedical Engineering, 2012, 40: 114–126. DOI: 10.1007/s10439-011-0414-2. [25] LOCKHART P, CRONIN D, WILLIAMS K, et al. Investigation of head response to blast loading [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2011, 70(2): E29–E36. DOI: 10.1097/TA.0b013e3181de3f4b. [26] SHRIDHARANI J K, WOOD G W, PANZER M B, et al. Porcine head response to blast [J]. Frontiers in Neurology, 2012, 3: 70. DOI: 10.3389/fneur.2012.00070. [27] SINGH D, CRONIN D S, HALADUICK T N. Head and brain response to blast using sagittal and transverse finite element models [J]. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(4): 470–489. DOI: 10.1002/cnm.2612. [28] 马伟杰, 郝烨, 刘志新, 等. 中国中等尺寸成年男性人体测量学特征参数研究 [C]//2021中国汽车工程学会年会论文集(4). 上海: 中国汽车工程学会, 2021: 6. DOI: 10.26914/c.cnkihy.2021.029515. [29] 李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013: 44–49. [30] 卢芳云, 李翔宇, 田占东, 等. 武器毁伤与评估 [M]. 北京: 科学出版社, 2021: 120–123. [31] QI Z Z, LIN Y L, LIANG W, et al. Explosion power evaluation based on the energy absorption characteristics of expansion tube structure [J]. International Journal of Impact Engineering, 2024, 186: 104886. DOI: 10.1016/j.ijimpeng.2024.104886. [32] PRZEKWAS A, GARIMELLA H T, TAN X G, et al. Biomechanics of blast TBI with time-resolved consecutive primary, secondary, and tertiary loads [J]. Military Medicine, 2019, 184(S1): 195–205. DOI: 10.1093/milmed/usy344. [33] DIONNE J P, LEVINE J, MAKRIS A. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets [J]. Shock Waves, 2018, 28(1): 5–18. DOI: 10.1007/s00193-017-0737-5. [34] ZHANG L Y, YANG K H, KING A I. A proposed injury threshold for mild traumatic brain injury [J]. Journal of Biomechanical Engineering, 2004, 126(2): 226–236. DOI: 10.1115/1.1691446. [35] KING D, HUME P, GISSANE C, et al. The influence of head impact threshold for reporting data in contact and collision sports: systematic review and original data analysis [J]. Sports Medicine, 2016, 46: 151–169. DOI: 10.1007/s40279-015-0423-7. -