爆炸冲击波作用下假人头部加速度响应测试与损伤分析

罗棕木 李克 陈浩 张玉武 梁民族 林玉亮

罗棕木, 李克, 陈浩, 张玉武, 梁民族, 林玉亮. 爆炸冲击波作用下假人头部加速度响应测试与损伤分析[J]. 爆炸与冲击, 2024, 44(12): 121435. doi: 10.11883/bzycj-2024-0242
引用本文: 罗棕木, 李克, 陈浩, 张玉武, 梁民族, 林玉亮. 爆炸冲击波作用下假人头部加速度响应测试与损伤分析[J]. 爆炸与冲击, 2024, 44(12): 121435. doi: 10.11883/bzycj-2024-0242
LUO Zongmu, LI Ke, CHEN Hao, ZHANG Yuwu, LIANG Minzu, LIN Yuliang. Acceleration response test and damage analysis of dummy head under explosion shock wave[J]. Explosion And Shock Waves, 2024, 44(12): 121435. doi: 10.11883/bzycj-2024-0242
Citation: LUO Zongmu, LI Ke, CHEN Hao, ZHANG Yuwu, LIANG Minzu, LIN Yuliang. Acceleration response test and damage analysis of dummy head under explosion shock wave[J]. Explosion And Shock Waves, 2024, 44(12): 121435. doi: 10.11883/bzycj-2024-0242

爆炸冲击波作用下假人头部加速度响应测试与损伤分析

doi: 10.11883/bzycj-2024-0242
基金项目: 国家自然科学基金(12072368)
详细信息
    作者简介:

    罗棕木(1997- ),男,博士研究生,langdon0114@163.com

    通讯作者:

    林玉亮(1978- ),男,博士,教授,ansen_liang@163.com

  • 中图分类号: O383

Acceleration response test and damage analysis of dummy head under explosion shock wave

  • 摘要: 为了研究爆炸冲击波作用下人体头部的加速度响应、建立加速度与爆炸冲击波超压的内在联系、评价基于加速度参数的头部损伤评估指标,利用标准人体参数的假人模型开展了多种TNT当量的空中静爆试验,获得了不同比例距离下模型头部的加速度时程曲线以及同距离处的自由场超压曲线。基于峰值线性加速度、头部损伤标准(head injury criterion, HIC)和头部撞击功率(head impact power, HIP)定量分析了头部损伤的风险等级,评价3种损伤评估指标在爆炸场景下的适用性和有效性。结果显示,距爆心4.2 m处的假人头部加速度随TNT当量的增加而迅速增大,TNT质量在1~4 kg范围内,正对爆心方向峰值加速度由16.29g增大至70.11g;在本次试验工况下,3种评估指标预测轻度脑损伤(mild traumatic brain injury, mTBI)风险最大依次为25%、10%和5%,其中HIP指标评估的头部轻度损伤风险偏低;当3种评估指标达到头部严重损伤阈值时,对应的峰值超压依次为0.322、0.300和0.332 MPa,其中HIC指标对应的峰值超压最低,表明其预测头部严重损伤的敏感性最强。
  • 图  1  假人模型

    Figure  1.  Dummy model

    图  2  测量设备及其布设情况

    Figure  2.  Measuring instrument and layout

    图  3  不同TNT当量下自由场冲击波超压时间演化曲线

    Figure  3.  Overpressure-time histories of free-field shock waves under different TNT masses

    图  4  自由场冲击波超压随比例爆距的变化

    Figure  4.  Variation of free-field shock wave overpressure with scaled distance away from explosion center

    图  5  1 kg TNT的加速度时程曲线

    Figure  5.  Acceleration time histories of 1 kg TNT

    图  6  2 kg TNT的加速度时程曲线

    Figure  6.  Acceleration time histories of 2 kg TNT

    图  7  3 kg TNT的加速度时程曲线

    Figure  7.  Acceleration time histories of 3 kg TNT

    图  8  4 kg TNT的加速度时程曲线

    Figure  8.  Acceleration time histories of 4 kg TNT

    图  9  不同TNT质量下各轴向峰值加速度

    Figure  9.  Peak axial accelerations at different TNT masses

    图  10  各轴向峰值加速度与峰值超压关系

    Figure  10.  Relation between peak axial acceleration and peak overpressure

    图  11  不同工况下总加速度时程曲线

    Figure  11.  Time histories of resultant acceleration at different conditions

    图  12  峰值线性加速度与峰值超压关系

    Figure  12.  Relation between peak linear acceleration and peak overpressure

    图  13  HIC15与比例距离的关系

    Figure  13.  Relation between HIC15 and scaled distance

    图  14  HIC15与峰值超压的关系

    Figure  14.  Relation between HIC15 and peak overpressure

    图  15  不同TNT当量下HIP时程曲线

    Figure  15.  Time histories of HIP at different TNT masses

    图  16  HIPm与峰值超压的关系

    Figure  16.  Relation between HIPm and peak overpressure

    图  17  不同损伤评估指标的预测情况

    Figure  17.  Predictions of different injury assessment indexes

    表  1  试验工况

    Table  1.   Test conditions

    试验编号 TNT质量/
    kg
    测试距离/
    m
    比例距离/
    (m∙kg−1/3)
    理论超压/
    MPa
    1#,4# 1 4.2 4.20 0.045
    2#,7# 2 4.2 3.33 0.068
    3#,5# 3 4.2 2.91 0.089
    6#,8# 4 4.2 2.65 0.108
    下载: 导出CSV

    表  2  不同工况下各损伤评估指标的特征值

    Table  2.   Characteristic values of injury assessment indii under different conditions

    试验编号 TNT质量/kg 比例距离/(m∙kg−1/3) 峰值超压/MPa am/g γ15 ηm/kW
    1# 1 4.20 0.0486 22.77 4.66 1.30
    2# 2 3.33 0.0693 39.70 28.30 2.60
    3# 3 2.91 0.0984 58.68 45.92 3.97
    4# 1 4.20 0.0443 22.51 6.81 0.91
    5# 3 2.91 0.0956 64.62 51.14 4.35
    6# 4 2.65 0.1161 71.41 81.46 6.26
    7# 2 3.33 0.0775 38.54 23.98 2.50
    8# 4 2.65 0.1199 61.77 57.53 5.27
    下载: 导出CSV

    表  3  各损伤评估指标mTBI的损伤风险阈值

    Table  3.   Injury risk threshold of mild traumatic brain injury for each injury assessment index

    风险概率/% am/g 来源 风险概率/% γ15 来源 风险概率/% ηm/kW 来源
    5 39 文献[34] 5 10 文献[35] 5 4.7 文献[22]
    10 50 10 52 10 6.7
    25 66 25 136 25 9.7
    50 82 50 235 50 12.8
    80 106 75 333 75 15.9
    下载: 导出CSV
  • [1] 柳占立, 杜智博, 张家瑞, 等. 颅脑爆炸伤致伤机制及防护研究进展 [J]. 爆炸与冲击, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.

    LIU Z L, DU Z B, ZHANG J R, et al. Progress in the mechanism and protection of blast-induced traumatic brain injury [J]. Explosion and Shock Waves, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.
    [2] KEMPURAJ D, MOHAN R R. Blast injury: impact to the cornea [J]. Experimental Eye Research, 2024, 244: 109915. DOI: 10.1016/j.exer.2024.109915.
    [3] DEBENHAM L, KHAN N, NOUHAN B, et al. A systematic review of otologic injuries sustained in civilian terrorist explosions [J]. European Archives of Oto-Rhino-Laryngology, 2024, 281(5): 2223–2233. DOI: 10.1007/s00405-023-08393-z.
    [4] 康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.

    KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.
    [5] ROSENFELD J V, MCFARLANE A C, BRAGGE P, et al. Blast-related traumatic brain injury [J]. The Lancet Neurology, 2013, 12(9): 882–893. DOI: 10.1016/S1474-4422(13)70161-3.
    [6] 蔡志华, 贺葳, 汪剑辉, 等. 爆炸波致颅脑损伤力学机制与防护综述 [J]. 兵工学报, 2022, 43(2): 467–480. DOI: 10.3969/j.issn.1000-1093.2020.02.025.

    CAI Z H, HE W, HUANG J H, et al. Review on mechanical mechanism of blast-induced traumatic brain injury and protection technology [J]. Acta Armamentarii, 2022, 43(02): 467–480. DOI: 10.3969/j.issn.1000-1093.2020.02.025.
    [7] National Counterterrorism Center. A chronology of significant international terrorism for 2004 [M]. Washington: National Counterterrorism Center, 2005.
    [8] 崔蔚. 江苏响水“3·21”特别重大爆炸事故调查与启示 [J]. 消防科学与技术, 2020, 39(4): 570–575. DOI: 10.3969/j.issn.1009-0029.2020.04.039.

    CUI W. Investigation and inspiration of 3·21 particularly serious explosion in Xiangshui, Jiangsu [J]. Fire Science and Technology, 2020, 39(4): 570–575. DOI: 10.3969/j.issn.1009-0029.2020.04.039.
    [9] TAYLOR P A, LUDWIGSEN J S, FORD C C. Investigation of blast-induced traumatic brain injury [J]. Brain Injury, 2014, 28(7): 879–895. DOI: 10.3109/02699052.2014.888478.
    [10] 赵辉, 朱峰. 原发性颅脑冲击伤的生物力学机制 [J]. 创伤外科杂志, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.

    ZHAO H, ZHU F. The biomechanical mechanism of primary blast brain injury [J]. Journal of Traumatic Surgery, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.
    [11] MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
    [12] LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w.
    [13] GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
    [14] YU X C, WU T C, NGUYEN T T N, et al. Investigation of blast-induced cerebrospinal fluid cavitation: insights from a simplified head surrogate [J]. International Journal of Impact Engineering, 2022, 162: 104146. DOI: 10.1016/j.ijimpeng.2021.104146.
    [15] CHEN Y, HUANG W. Non-impact, blast-induced mild TBI and PTSD: concepts and caveats [J]. Brain Injury, 2011, 25(7/8): 641–650. DOI: 10.3109/02699052.2011.580313.
    [16] GULLOTTI D M, BEAMER M, PANZER M B, et al. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury [J]. Journal of Biomechanical Engineering, 2014, 136(9): 091004. DOI: 10.1115/1.4027873.
    [17] MAO H J, UNNIKRISHNAN G, RAKESH V, et al. Untangling the effect of head acceleration on brain responses to blast waves [J]. Journal of Biomechanical Engineering, 2015, 137(12): 124502. DOI: 10.1115/1.4031765.
    [18] DU Z B, WANG P, LUO P, et al. Mechanical mechanism and indicator of diffuse axonal injury under blast-type acceleration [J]. Journal of Biomechanics, 2023, 156: 111674. DOI: 10.1016/j.jbiomech.2023.111674.
    [19] SARVGHAD-MOGHADDAM H, REZAEI A, ZIEJEWSKI M, et al. Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI [J]. Shock Waves, 2017, 27(6): 919–927. DOI: 10.1007/s00193-017-0749-1.
    [20] VERSACE J. A review of the severity index [C] // Proceeding of the 15th Stapp Car Crash Conference. San Diego: Society of Automotive Engineers, 1971: 771–796. DOI: 10.4271/710881.
    [21] CAMPOLETTANO E T, GELLNER R A, SMITH E P, et al. Development of a concussion risk function for a youth population using head linear and rotational acceleration [J]. Annals of Biomedical Engineering, 2020, 48: 92–103. DOI: 10.1007/s10439-019-02382-2.
    [22] NEWMAN J A, SHEWCHENKO N. A proposed new biomechanical head injury assessment function-the maximum power index [R]. SAE Technical Paper, 2000: 362. DOI: 10.4271/2000-01-sc16.
    [23] TAKHOUNTS E G, HASIJA V, RIDELLA S A, et al. Kinematic rotational brain injury criterion (BRIC) [C]//Proceedings of the 22nd Enhanced Safety of Vehicles Conference. Washington: NHTSA, 2011: 1–10.
    [24] KIMPARA H, IWAMOTO M. Mild traumatic brain injury predictors based on angular accelerations during impacts [J]. Annals of Biomedical Engineering, 2012, 40: 114–126. DOI: 10.1007/s10439-011-0414-2.
    [25] LOCKHART P, CRONIN D, WILLIAMS K, et al. Investigation of head response to blast loading [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2011, 70(2): E29–E36. DOI: 10.1097/TA.0b013e3181de3f4b.
    [26] SHRIDHARANI J K, WOOD G W, PANZER M B, et al. Porcine head response to blast [J]. Frontiers in Neurology, 2012, 3: 70. DOI: 10.3389/fneur.2012.00070.
    [27] SINGH D, CRONIN D S, HALADUICK T N. Head and brain response to blast using sagittal and transverse finite element models [J]. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(4): 470–489. DOI: 10.1002/cnm.2612.
    [28] 马伟杰, 郝烨, 刘志新, 等. 中国中等尺寸成年男性人体测量学特征参数研究 [C]//2021中国汽车工程学会年会论文集(4). 上海: 中国汽车工程学会, 2021: 6. DOI: 10.26914/c.cnkihy.2021.029515.
    [29] 李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013: 44–49.
    [30] 卢芳云, 李翔宇, 田占东, 等. 武器毁伤与评估 [M]. 北京: 科学出版社, 2021: 120–123.
    [31] QI Z Z, LIN Y L, LIANG W, et al. Explosion power evaluation based on the energy absorption characteristics of expansion tube structure [J]. International Journal of Impact Engineering, 2024, 186: 104886. DOI: 10.1016/j.ijimpeng.2024.104886.
    [32] PRZEKWAS A, GARIMELLA H T, TAN X G, et al. Biomechanics of blast TBI with time-resolved consecutive primary, secondary, and tertiary loads [J]. Military Medicine, 2019, 184(S1): 195–205. DOI: 10.1093/milmed/usy344.
    [33] DIONNE J P, LEVINE J, MAKRIS A. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets [J]. Shock Waves, 2018, 28(1): 5–18. DOI: 10.1007/s00193-017-0737-5.
    [34] ZHANG L Y, YANG K H, KING A I. A proposed injury threshold for mild traumatic brain injury [J]. Journal of Biomechanical Engineering, 2004, 126(2): 226–236. DOI: 10.1115/1.1691446.
    [35] KING D, HUME P, GISSANE C, et al. The influence of head impact threshold for reporting data in contact and collision sports: systematic review and original data analysis [J]. Sports Medicine, 2016, 46: 151–169. DOI: 10.1007/s40279-015-0423-7.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  44
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-10-08
  • 网络出版日期:  2024-11-04
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回