基于自由场爆炸的猪鼓膜破裂规律实验研究

向书毅 薛松波 杜智博 赵杨 王兴皓 田旭 高志强 冯国栋 费舟 庄茁 柳占立

向书毅, 薛松波, 杜智博, 赵杨, 王兴皓, 田旭, 高志强, 冯国栋, 费舟, 庄茁, 柳占立. 基于自由场爆炸的猪鼓膜破裂规律实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0255
引用本文: 向书毅, 薛松波, 杜智博, 赵杨, 王兴皓, 田旭, 高志强, 冯国栋, 费舟, 庄茁, 柳占立. 基于自由场爆炸的猪鼓膜破裂规律实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0255
XIANG Shuyi, XUE Songbo, DU Zhibo, ZHAO Yang, WANG Xinghao, TIAN Xu, GAO Zhiqiang, FENG Guodong, FEI Zhou, ZHUANG Zhuo, LIU Zhanli. Experimental study on the law of rupture of pig eardrum based on free-field explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0255
Citation: XIANG Shuyi, XUE Songbo, DU Zhibo, ZHAO Yang, WANG Xinghao, TIAN Xu, GAO Zhiqiang, FENG Guodong, FEI Zhou, ZHUANG Zhuo, LIU Zhanli. Experimental study on the law of rupture of pig eardrum based on free-field explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0255

基于自由场爆炸的猪鼓膜破裂规律实验研究

doi: 10.11883/bzycj-2024-0255
基金项目: 国家重点研发计划(2020-JCJQ-ZD-254,2022YFC3320502)
详细信息
    作者简介:

    向书毅(1995- ),女,博士研究生,xiangsy19@mails.tsinghua.edu.cn

    通讯作者:

    柳占立(1981- ),男,博士,教授,liuzhanli@mail.tsinghua.edu.cn

  • 中图分类号: O389

Experimental study on the law of rupture of pig eardrum based on free-field explosion

  • 摘要: 听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因。强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现当自由场压力低于170 kPa,鼓膜无明显损伤;自由场超压峰值大于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能和载荷频率成分密切相关。本研究认为,除了超压峰值,冲击波波形频谱分布可能对鼓膜破裂程度影响显著。
  • 图  1  实验中小型猪及压力传感器的布放示意图

    Figure  1.  Layout diagrams of experimental minipigs and pressure sensors

    图  2  实验小型猪的固定及面部防护

    Figure  2.  Fixation and facial protection of experimental minipigs

    图  3  1.9 kg TNT当量爆炸距离爆心1.8 m处的实测自由场超压时程曲线以及用Friedlander方程拟合的结果

    Figure  3.  Measured free-field overpressure-time histories at a distance of 1.8 m away from the explosion center of the 1.9-kg-TNT equivalent explosion and the fitting result with the Friedlander equation

    图  4  1.9 kg TNT当量爆炸条件下的距离拟合曲线

    Figure  4.  Distance-peak pressure and -positive pressure duration fitting curves under 1.9-kg-TNT equivalent explosion condition

    图  5  8.0 kg TNT当量爆炸条件下的距离拟合曲线

    Figure  5.  Distance-peak pressure and -positive pressure duration fitting curves under 8.0-kg-TNT equivalent explosion condition

    图  6  不同爆炸条件下不同爆心距处的归一化能量频谱

    Figure  6.  Normalized energy flux over 11 frequency bands from below 62.5 Hz to above 16 kHz at different distances away from the explosion centers under different explosion conditions

    图  7  爆炸后损伤鼓膜分类

    Figure  7.  Classification of damaged eardrum after explosion

    图  8  通过逻辑回归得到的小型猪鼓膜破裂概率函数

    Figure  8.  Logistic regression calculated probability of TM rupture of minipigs caused by blast waves

    图  9  冲击波致小型猪鼓膜破裂风险曲线

    Figure  9.  Risk curves of TM rupture of minipigs caused by blast waves

    图  10  8.0 kg TNT当量爆炸条件下距爆心2.9 m处小型猪爆炸前后听力功能的改变以及爆炸后耳蜗毛细胞的形态

    Figure  10.  Hearing function changes of minipigs at a distance of 2.9 m away from the explosion center of 8.0-kg-TNT equivalent explosion and hair cell morphology of the cochlea after explosion

    表  1  不同爆炸条件鼓膜创伤率及小型猪致死率

    Table  1.   Eardum trauma ratios and mortality ratios of minipigs under different explosion conditions

    炸药当
    量/kg
    爆心
    距/m
    超压峰值/
    kPa
    正压持续
    时间/ms
    创伤率/% 致死
    率/%
    鼓膜
    破裂
    鼓膜
    充血
    鼓膜
    无损
    1.9 1.8 511.59±30.68 1.40±0.15 25 25 50 0
    2.6 169.97±4.19 2.80±0.01 0 0 100 0
    3.2 96.30±1.38 4.65±0.14 0 0 100 0
    8.0 2.6* 628.28 1.30 0 25 75 50
    2.9 528.74 2.11 0 100 0 0
    3.2 378.51±38.57 2.98±0.14 100 0 0 0
    3.8 237.01±15.46 4.26±0.10 50 25 0 0
    4.6 142.13±1.32 5.69±0.11
    5.5 100.43 6.63
     注:*8.0 kg TNT当量爆炸条件下距爆心2.6 m处的载荷数据由其他距离参数推算而得。
    下载: 导出CSV
  • [1] GAN R Z, NAKMALI D, JI X D, et al. Mechanical damage of tympanic membrane in relation to impulse pressure waveform–A study in chinchillas [J]. Hearing Research, 2016, 340: 25–34. DOI: 10.1016/j.heares.2016.01.004.
    [2] GAN R Z, LECKNESS K, NAKMALI D, et al. Biomechanical measurement and modeling of human eardrum injury in relation to blast wave direction [J]. Military Medicine, 2018, 183(S1): 245–251. DOI: 10.1093/milmed/usx149.
    [3] GAN R Z, LECKNESS K, SMITH K, et al. Characterization of protection mechanisms to blast overpressure for personal hearing protection devices–Biomechanical measurement and computational modeling [J]. Military Medicine, 2019, 184(S1): 251–260. DOI: 10.1093/milmed/usy299.
    [4] LECKNESS K, NAKMALI D, GAN R Z. Computational modeling of blast wave transmission through human ear [J]. Military Medicine, 2018, 183(S1): 262–268. DOI: 10.1093/milmed/usx226.
    [5] BROWN M A, JI X D, GAN R Z. 3D Finite element modeling of blast wave transmission from the external ear to cochlea [J]. Annals of Biomedical Engineering, 2021, 49(2): 757–768. DOI: 10.1007/s10439-020-02612-y.
    [6] BROWN M A, BRADSHAW J J, GAN R Z. Three-dimensional finite element modeling of blast wave transmission from the external ear to a spiral cochlea [J]. Journal of Biomechanical Engineering, 2022, 144(1): 014503. DOI: 10.1115/1.4051925.
    [7] BRADSHAW J J, BROWN M A, JIANG S Y, et al. 3D finite element model of human ear with 3-Chamber spiral cochlea for blast wave transmission from the ear canal to cochlea [J]. Annals of Biomedical Engineering, 2023, 51(5): 1106–1118. DOI: 10.1007/s10439-023-03200-6.
    [8] JIANG S Y, SMITH K, GAN R Z. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure [J]. Hearing Research, 2019, 378: 43–52. DOI: 10.1016/j.heares.2018.12.003.
    [9] JIANG S Y, DAI C K, GAN R Z. Dual-laser measurement of human stapes footplate motion under blast exposure [J]. Hearing Research, 2021, 403: 108177. DOI: 10.1016/j.heares.2021.108177.
    [10] BIEN A G, JIANG S Y, GAN R Z. Real-time measurement of stapes motion and intracochlear pressure during blast exposure [J]. Hearing Research, 2023, 429: 108702. DOI: 10.1016/j.heares.2023.108702.
    [11] GAN R Z, JIANG S Y. Surface motion changes of tympanic membrane damaged by blast waves [J]. Journal of Biomechanical Engineering, 2019, 141(9): 091009. DOI: 10.1115/1.4044052.
    [12] LUO H Y, DAI C K, GAN R Z, et al. Measurement of young’s modulus of human tympanic membrane at high strain rates [J]. Journal of Biomechanical Engineering, 2009, 131(6): 064501. DOI: 10.1115/1.3118770.
    [13] LUO H Y, JIANG S Y, NAKMALI D U, et al. Mechanical properties of a human eardrum at high strain rates after exposure to blast waves [J]. Journal of Dynamic Behavior of Materials, 2016, 2(1): 59–73. DOI: 10.1007/s40870-015-0041-3.
    [14] ENGLES W G, WANG X L, GAN R Z. Dynamic properties of human tympanic membrane after exposure to blast waves [J]. Annals of Biomedical Engineering, 2017, 45(10): 2383–2394. DOI: 10.1007/s10439-017-1870-0.
    [15] LIANG J F, LUO H Y, YOKELL Z, et al. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection [J]. Hearing Research, 2016, 339: 1–11. DOI: 10.1016/j.heares.2016.05.012.
    [16] LIANG J F, YOKELL Z A, NAKMAILI D U, et al. The effect of blast overpressure on the mechanical properties of a chinchilla tympanic membrane [J]. Hearing Research, 2017, 354: 48–55. DOI: 10.1016/j.heares.2017.08.003.
    [17] LIANG J F, SMITH K D, GAN R Z, et al. The effect of blast overpressure on the mechanical properties of the human tympanic membrane [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100: 103368. DOI: 10.1016/j.jmbbm.2019.07.026.
    [18] CHEN T, SMITH K, JIANG S Y, et al. Progressive hearing damage after exposure to repeated low-intensity blasts in chinchillas [J]. Hearing Research, 2019, 378: 33–42. DOI: 10.1016/j.heares.2019.01.010.
    [19] SMITH K D, CHEN T, GAN R Z. Hearing damage induced by blast overpressure at mild TBI level in a chinchilla model [J]. Military Medicine, 2020, 185(S1): 248–255. DOI: 10.1093/milmed/usz309.
    [20] JIANG S Y, GANNON A N, SMITH K D, et al. Prevention of blast-induced auditory injury using 3D printed helmet and hearing protection device–A preliminary study on biomechanical modeling and animal [J]. Military Medicine, 2021, 186(S1): 537–545. DOI: 10.1093/milmed/usaa317.
    [21] SHAO N N, JIANG S Y, YOUNGER D, et al. Central and peripheral auditory abnormalities in chinchilla animal model of blast-injury [J]. Hearing Research, 2021, 407: 108273. DOI: 10.1016/j.heares.2021.108273.
    [22] DEWEY J M. The shape of the blast wave: studies of the Friedlander equation [C]//Proceedings of the 21st International Symposium on Military Aspects of Blast and Shock. 2010: 1–9.
    [23] FRIEDLANDER F G. The diffraction of sound pulses I. Diffraction by a semi-infinite plane [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1946, 186(1006): 322–344. DOI: 10.1098/rspa.1946.0046.
    [24] IYOHO A E, HO K, CHAN P. The development of a tympanic membrane model and probabilistic dose-response risk assessment of rupture because of blast [J]. Military Medicine, 2020, 185(S1): 234–242. DOI: 10.1093/milmed/usz215.
    [25] YOUNG R W. On the energy transported with a sound pulse [J]. The Journal of the Acoustical Society of America, 1970, 47(2A): 441–442. DOI: 10.1121/1.1911547.
    [26] RAFAELS K, BASS C, SALZAR R S, et al. Survival risk assessment for primary blast exposures to the head [J]. Journal of Neurotrauma, 2011, 28: 2319–2328. DOI: 10.1089/neu.2009.1207.
    [27] ZHU F, CHOU C C, YANG K H, et al. Some considerations on the threshold and inter-species scaling law for primary blast-induced traumatic brain injury: a semi-analytical approach [J]. Journal of Mechanics in Medicine and Biology, 2013, 13(4): 1350065. DOI: 10.1142/S0219519413500656.
    [28] KOIKE T, WADA H, ITO F, et al. High-speed video observation of tympanic membrane rupture in guinea pigs [J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2003, 46(4): 1434–1440. DOI: 10.1299/jsmec.46.1434.
    [29] JENSEN J H, BONDING P. Experimental pressure induced rupture of the tympanic membrane in man [J]. Acta Oto-Laryngologica, 1993, 113(1): 62–67. DOI: 10.3109/00016489309135768.
    [30] 张洁元. 爆炸冲击波致豚鼠听觉和前庭功能损害评估技术与标准研究 [D]. 重庆: 陆军军医大学, 2022. DOI: 10.27001/d.cnki.gtjyu.2022.000239.

    ZHANG J Y. Evaluation techniques and criteria for auditory and vestibular function impairment caused by blast shock waves in guinea pigs [D]. Chongqing: Army Medical University, 2022. DOI: 10.27001/d.cnki.gtjyu.2022.000239.
    [31] AMREIN B E, LETOWSKI T R. High level impulse sounds and human hearing: standards, physiology, quantification: ARL-TR-6017 [R]. Affiliation: U. S. Army Research Laboratory, 2012.
    [32] CULLIS I G. Blast waves and how they interact with structures [J]. BMJ Military Health, 2001, 147(1): 16–26. DOI: 10.1136/jramc-147-01-02.
    [33] PADURARIU S, DE GREEF D, JACOBSEN H, et al. Pressure buffering by the tympanic membrane. In vivo measurements of middle ear pressure fluctuations during elevator motion [J]. Hearing Research, 2016, 340: 113–120. DOI: 10.1016/j.heares.2015.12.004.
    [34] XIE P P, PENG Y, HU J J, et al. Assessment of hearing loss induced by tympanic membrane perforations under blast environment [J]. European Archives of Oto-Rhino-Laryngology, 2020, 277(2): 453–461. DOI: 10.1007/s00405-019-05710-3.
    [35] LITTLEFIELD P D, BRUNGART D S. Long-term sensorineural hearing loss in patients with blast-induced tympanic membrane perforations [J]. Ear and Hearing, 2020, 41(1): 165–172. DOI: 10.1097/AUD.0000000000000751.
    [36] FAY J, PURIA S, DECRAEMER W F, et al. Three approaches for estimating the elastic modulus of the tympanic membrane [J]. Journal of Biomechanics, 2005, 38(9): 1807–1815. DOI: 10.1016/j.jbiomech.2004.08.022.
    [37] PRICE G R, KIM H N, LIM D J, et al. Hazard from weapons impulses: histological and electrophysiological evidence [J]. The Journal of the Acoustical Society of America, 1989, 85(3): 1245–1254. DOI: 10.1121/1.397455.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  14
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 修回日期:  2024-09-23
  • 网络出版日期:  2024-10-08

目录

    /

    返回文章
    返回