防护风镜对眼爆震伤诱导视网膜病理损伤和自噬变化的有效改善

晁望舒 费晓炜 李伟萍 豆雅楠 王俊龙 何鑫 吕伟豪 武秀权 陈红庆 陈雷颖 马天 费舟 庄茁 康越 费霏

晁望舒, 费晓炜, 李伟萍, 豆雅楠, 王俊龙, 何鑫, 吕伟豪, 武秀权, 陈红庆, 陈雷颖, 马天, 费舟, 庄茁, 康越, 费霏. 防护风镜对眼爆震伤诱导视网膜病理损伤和自噬变化的有效改善[J]. 爆炸与冲击, 2024, 44(12): 121441. doi: 10.11883/bzycj-2024-0257
引用本文: 晁望舒, 费晓炜, 李伟萍, 豆雅楠, 王俊龙, 何鑫, 吕伟豪, 武秀权, 陈红庆, 陈雷颖, 马天, 费舟, 庄茁, 康越, 费霏. 防护风镜对眼爆震伤诱导视网膜病理损伤和自噬变化的有效改善[J]. 爆炸与冲击, 2024, 44(12): 121441. doi: 10.11883/bzycj-2024-0257
CHAO Wangshu, FEI Xiaowei, LI Weiping, DOU Yaʼnan, WANG Junlong, HE Xin, LYU Weihao, WU Xiuquan, CHEN Hongqing, CHEN Leiying, MA Tian, FEI Zhou, ZHUANG Zhuo, KANG Yue, FEI Fei. Effective improvement of retinal pathological injury and autophagy changes induced by explosive eye blast injury by protective goggles[J]. Explosion And Shock Waves, 2024, 44(12): 121441. doi: 10.11883/bzycj-2024-0257
Citation: CHAO Wangshu, FEI Xiaowei, LI Weiping, DOU Yaʼnan, WANG Junlong, HE Xin, LYU Weihao, WU Xiuquan, CHEN Hongqing, CHEN Leiying, MA Tian, FEI Zhou, ZHUANG Zhuo, KANG Yue, FEI Fei. Effective improvement of retinal pathological injury and autophagy changes induced by explosive eye blast injury by protective goggles[J]. Explosion And Shock Waves, 2024, 44(12): 121441. doi: 10.11883/bzycj-2024-0257

防护风镜对眼爆震伤诱导视网膜病理损伤和自噬变化的有效改善

doi: 10.11883/bzycj-2024-0257
基金项目: 陕西省自然科学基础研究计划重点项目(2023-JC-ZD-48);空军军医大学军事医学提升计划(2021JSTS14);西京医院医务人员培养交叉融合专项(XJZT24JC39)
详细信息
    作者简介:

    晁望舒(2001- ),男,博士研究生,2675161896@qq.com

    通讯作者:

    费 霏(1986- ),女,博士,副教授,feepluss@fmmu.edu.cn

  • 中图分类号: O389

Effective improvement of retinal pathological injury and autophagy changes induced by explosive eye blast injury by protective goggles

  • 摘要: 首先基于头部动态测试系统与激波管和外场实弹实爆测试环境,验证了眼部装备(护目镜和风镜)的防护性能。研究结果表明,风镜防护性能更优,建议给执勤人员配发兼容防紫外、强光、烟雾和防破片功能的风镜产品,以提高相关人员眼部防护能力。此后,研究眼部爆震伤后组织损伤、功能改变及市售风镜动物实验版的防护作用与机制,为防治眼部爆震伤及风镜后续的设计改进提供理论依据。选用比格犬和C57小鼠进行相关动物实验,通过HE、Tunel、Nissl染色、视觉电生理检查等检测方法,发现随着冲击波强度的提高和伤后时间的延长,视网膜损伤程度和细胞凋亡程度均提高,其中神经节细胞层(ganglion cell layer, GCL)和光感受器内外节交界处(layer of photoreceptor inner/outer segments, IS/OS)受到的损伤最严重;进一步研究分子变化发现,自噬相关调节蛋白SQSTM1/p62(P < 0.0001)和LC3-Ⅱ(P = 0.8437)、LC3-Ⅰ(P = 0.003)的表达量明显增高,说明视网膜损伤一定程度上是由爆震伤后自噬增强这一机制导致的。市售风镜的动物实验版能够有效减轻冲击波对视网膜的损伤,保护RNFL、INL/ONL、GCL和IS/OS的结构。同时,与其他组相比,3.5 MPa组防护组与损伤组视网膜损伤和细胞凋亡程度差异最显著,推测该强度下防护风镜发挥了最大的保护作用,保护机制与防护降低视网膜细胞自噬相关。
  • 图  1  防护护目镜和防护风镜实物照片

    Figure  1.  Photos of protective sunglasses and protective goggles

    图  2  太阳镜和风镜的防护性能测试实验装置

    Figure  2.  Experimental devices for testing protective performances tof sun glasses and goggles

    图  3  3种不同防护条件下的激波管管口和头模眼部超压-时间曲线

    Figure  3.  Overpressure-time curves of the mouth of the shock tube and the eyes of the head models under three different protection conditions

    图  4  3种不同防护条件下的自由场和头模眼部超压-时间曲线

    Figure  4.  Overpressure-time curves of the free field and the eyes of the head models under three different protection conditions

    图  5  不同激波强度下防护组与损伤组视网膜HE染色结果

    Figure  5.  Retinal HE staining results of the protection group and the injury group under different shock wave intensities

    图  6  不同激波强度下样本平均INL和ONL厚度

    Figure  6.  Mean INL and ONL thickness of the samples under different shock wave intensities

    图  7  4.5 MPa激波下,不同取样时间防护组与损伤组视网膜HE染色结果

    Figure  7.  Retinal HE staining results of the protection group and the injury group under 4.5-MPa shock wave at different sampling times

    图  8  4.5 MPa激波下,不同取样时间样本平均INL和ONL厚度以及两者的比

    Figure  8.  Mean INL and ONL thicknesses of the samples and their ratio under 4.5-MPa shock wave at different sampling times

    图  9  不同激波强度下防护组与损伤组视网膜Tunel染色结果

    Figure  9.  Retinal Tunel staining results of the protection group and the injury group under different shock wave intensities

    图  10  4.5 MPa激波下,不同取样时间防护组与损伤组视网膜Tunel染色结果

    Figure  10.  Retinal Tunel staining results of the protection group and the injury group under 4.5-MPa shock wave at different sampling times

    图  11  不同激波强度下样本IS/OS厚度和

    Figure  11.  Sum of IS and OS thickness of the samples under different shock wave intensities

    图  12  4.5 MPa激波下,不同取样时间样本IS/OS厚度和

    Figure  12.  Sum of IS and OS thickness of the samples under 4.5-MPa shock wave at different sampling times

    图  13  不同激波强度下防护组与损伤组RGC细胞数

    Figure  13.  RGC count of the protection group and the injury group under different shock wave intensities

    图  14  4.5 MPa激波下,不同取样时间防护组与损伤组RGC细胞数

    Figure  14.  RGC count of the protection group and the injury group under 4.5-MPa shock wave at different sampling times

    图  15  不同激波强度下,防护组与损伤组单位视野下RGC凋亡数量

    Figure  15.  Apoptotic number of RGCs in unit field of the protection group and the injury group under different shock wave intensities

    图  16  4.5 MPa激波下,不同取样时间防护组与损伤组单位视野下RGC凋亡数量

    Figure  16.  Apoptotic number of RGCs in unit field of the protection group and the injury group under 4.5-MPa shock wave at different sampling times

    图  17  不同激波强度下,防护组与损伤组单位视野下凋亡细胞数量

    Figure  17.  Apoptotic number of cells in unit field of the protection group and the injury group under different shock wave intensities

    图  18  不同激波强度下防护组与损伤组视网膜Nissl染色结果

    Figure  18.  Retinal Nissl staining results of the protection group and the injury group under different shock wave intensities

    图  19  4.5 MPa激波下,不同取样时间防护组与损伤组视网膜Nissl染色结果

    Figure  19.  Retinal Nissl staining results of the protection group and the injury group under 4.5-MPa shock wave at different sampling times

    图  20  不同激波强度下,防护组与损伤组单位视野下阳性细胞数

    Figure  20.  Number of positive cells in unit field of the protection group and the injury group under different shock wave intensities

    图  21  4.5 MPa激波下,不同取样时间防护组与损伤组单位视野下阳性细胞数

    Figure  21.  Number of positive cells in unit field of the protection group and the injury group under 4.5-MPa shock wave at different sampling times

    图  22  4.5 MPa激波下,防护组与损伤组视网膜HE和Nissl染色结果

    Figure  22.  Retinal HE staining and Nissl staining results of the protection group and the injury group under 4.5-MPa shock wave intensities

    图  23  4.5 MPa激波下,样本平均INL和ONL厚度

    Figure  23.  Mean INL and ONL thicknesses of the samples under 4.5-MPa shock wave intensities

    图  24  4.5 MPa激波下,防护组与损伤组单位视野下RGC细胞数

    Figure  24.  RGC and positive cell count in unit field of the protection group and the injury group under 4.5-MPa shock wave intensity

    图  25  4.5 MPa激波下,防护组与损伤组视网膜Tunel检测结果

    Figure  25.  Retinal Tunel test results of the protection group and the injury group under 4.5-MPa shock wave intensity

    图  26  防护组和损伤组视网膜的HE染色和Nissl染色结果以及各组视网膜厚度量化结果

    Figure  26.  Retinal HE and Nissl staining results of the protection group and the injury group as well as quantitative results of retinal thickness in each group

    图  27  防护组和损伤组视网膜的凋亡检测以及视网膜GCL凋亡细胞量化结果

    Figure  27.  Apoptosis detection in the retina of the protection group and the injury group as well as quantitative results of apoptotic cells in the retinal RGC layer

    图  28  视觉电生理检查各组Ops数据以及Ops指标中O2幅值量化

    Figure  28.  Ops data of each group measured by visual electrophysiology as well as quantification of O2 amplitude in Ops indices

    图  29  视觉电生理检查各组VEP数据以及VEP指标中潜伏期量化和P2幅值量化

    Figure  29.  VEP data of each group measured by visual electrophysiology as well as quantifications of latency and P2 amplitude in VEP indices

    图  30  透射电镜检测各组RGC中自噬情况

    Figure  30.  Transmission electron microscopy detection of autophagy in the retina of each group

    图  31  WB检测各组中自噬相关蛋白SQSTM1/p62、LC3-Ⅰ和LC3-Ⅱ表达水平

    Figure  31.  WB detection of autophagy-related proteins SQSTM1/p62, LC3-Ⅰ and LC3-Ⅱ expression levels in each group

    图  32  SQSTM1/p62、LC3-Ⅰ和 LC3-Ⅱ相对表达量量化

    Figure  32.  Quantification of SQSTM1/p62, LC3-Ⅰ and LC3-Ⅱ relative expression levels

  • [1] DEMAR J, SHARROW K, HILL M, et al. Effects of primary blast overpressure on retina and optic tract in rats [J]. Frontiers in Neurology, 2016, 7: 59. DOI: 10.3389/fneur.2016.00059.
    [2] WANG H C H, CHOI J H, GREENE W A, et al. Pathophysiology of blast-induced ocular trauma with apoptosis in the retina and optic nerve [J]. Military Medicine, 2014, 179(S8): 34–40. DOI: 10.7205/MILMED-D-13-00504.
    [3] CHOI J H, GREENE W A, JOHNSON A J, et al. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure [J]. Clinical & Experimental Ophthalmology, 2015, 43(3): 239–246. DOI: 10.1111/ceo.12407.
    [4] TANIELIAN T L, JAYCOX L H. Invisible wounds of war: psychological and cognitive injuries, their consequences, and services to assist recovery [M]. Santa Monica: Rand Corporation, 2008. DOI: 10.1176/ps.2009.60.2.273.
    [5] Defense and Veterans Brain Injury Center. DoD numbers for traumatic brain injury worldwide: totals 2000–2013 (Q1-Q3) [EB/OL]. (2014-06-10)[2024-01-07]. http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi.
    [6] MAC DONALD C L, JOHNSON A M, WIERZECHOWSKI L, et al. Prospectively assessed clinical outcomes in concussive blast vs nonblast traumatic brain injury among evacuated US military personnel [J]. JAMA Neurology, 2014, 71(8): 994–1002. DOI: 10.1001/jamaneurol.2014.1114.
    [7] GOODRICH G L, FLYG H M, KIRBY J E, et al. Mechanisms of TBI and visual consequences in military and veteran populations [J]. Optometry and Vision Science, 2013, 90(2): 105–112. DOI: 10.1097/OPX.0b013e31827f15a1.
    [8] BAILOOR S, BHARDWAJ R, NGUYEN T D. Effectiveness of eye armor during blast loading [J]. Biomechanics and Modeling in Mechanobiology, 2015, 14(6): 1227–1237. DOI: 10.1007/s10237-015-0667-z.
    [9] MOHAN K, KECOVA H, HERNANDEZ-MERINO E, et al. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury [J]. Investigative Ophthalmology & Visual Science, 2013, 54(5): 3440–3450. DOI: 10.1167/iovs.12-11522.
    [10] JHA K N. Indian soldiers need eye protection [J]. Journal of Clinical and Diagnostic Research, 2017, 11(2): NE01–NE03. DOI: 10.7860/JCDR/2017/20792.9350.
    [11] 邹振高, 李俊红. 国外防护眼镜的现状与发展趋势 [J]. 中国个体防护装备, 2015(1): 29–31. DOI: 10.16102/j.cnki.cppe.2015.01.007.

    ZOU Z G, LI J H. The current situation and development trend of foreign military protective eyewear [J]. China Personal Protective Equipment, 2015(1): 29–31. DOI: 10.16102/j.cnki.cppe.2015.01.007.
    [12] SUNDARAMURTHY A, SKOTAK M, ALAY E, et al. Assessment of the effectiveness of combat eyewear protection against blast overpressure [J]. Journal of Biomechanical Engineering, 2018, 140(7): 071003. DOI: 10.1115/1.4039823.
    [13] WILLIAMS S T, HARDING T H, STATZ J K, et al. Blast wave dynamics at the cornea as a function of eye protection form and fit [J]. Military Medicine, 2017, 182(S1): 226–229. DOI: 10.7205/MILMED-D-16-00042.
    [14] PARVER L M. The national eye trauma system [J]. International Ophthalmology Clinics, 1988, 28(3): 203–205. DOI: 10.1097/00004397-198802830-00004.
    [15] HORNBLASS A. Eye injuries in the military [J]. International Ophthalmology Clinics, 1981, 21(4): 121–138. DOI: 10.1097/00004397-198102140-00008.
    [16] HILBER D J. Eye injuries, active component, U. S. Armed Forces, 2000–2010 [J]. Medical Surveillance Monthly Report, 2011, 18(5): 2–7.
    [17] 蔡志华, 贺葳, 汪剑辉, 等. 爆炸波致颅脑损伤力学机制与防护综述 [J]. 兵工学报, 2022, 43(2): 467–480. DOI: 10.3969/j.issn.1000-1093.2022.02.025.

    CAI Z H, HE W, WANG J H, et al. Review on mechanical mechanism of blast-induced traumatic brain injury and protection technology [J]. Acta Armamentarii, 2022, 43(2): 467–480. DOI: 10.3969/j.issn.1000-1093.2022.02.025.
    [18] 杨亚东, 李向东, 王晓鸣. 爆炸冲击波空中传播特征参量的优化拟合 [J]. 爆破器材, 2014, 43(1): 13–18. DOI: 10.3969/j.issn.1001-8352.2014.01.004.

    YANG Y D, LI X D, WANG X M. Optimum fitting for characteristic parameters of blast shockwaves traveling in air [J]. Explosive Materials, 2014, 43(1): 13–18. DOI: 10.3969/j.issn.1001-8352.2014.01.004.
    [19] 康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究 [J]. 爆炸与冲击, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.

    KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
    [20] 王正国, 孙立英, 杨志焕, 等. 系列生物激波管的研制与应用 [J]. 爆炸与冲击, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.

    WANG Z G, SUN L Y, YANG Z H, et al. The design production and application of a series of bio-shock tubes [J]. Explosion and Shock Waves, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.
    [21] 蒋建新, 曾灵. 肺爆炸冲击伤机制与防护研究进展 [J]. 陆军军医大学学报, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.

    JIANG J X, ZENG L. Advance of protection and mechanism of lung blast injury [J]. Journal of Army Medical University, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.
    [22] 唐承功, 杨志焕, 王正国, 等. BST-Ⅰ型生物激波管动物实验研究 [J]. 第三军医大学学报, 1989, 11(3): 172–174. DOI: 10.3321/j.issn:1000-5404.1989.03.004.

    TANG C G, YANG Z H, WANG Z G, et al. An experimental study on the effects of a biological shock tube [J]. Journal of Third Military Medical University, 1989, 11(3): 172–174. DOI: 10.3321/j.issn:1000-5404.1989.03.004.
    [23] 冷华光, 王正国, 杨志焕, 等. 生物激波管及动物耐受性的实验研究 [J]. 爆炸与冲击, 1993, 13(3): 272–279. DOI: 10.11883/1001-1455(1993)03-0272-8.

    LENG H G, WANG Z G YANG Z H, et al. A biological shock tube and an experimental study on animal tolerance to blast wave [J]. Explosion and Shock Waves, 1993, 13(3): 272–279. DOI: 10.11883/1001-1455(1993)03-0272-8.
    [24] SUDHARSAN R, SIMONE K M, ANDERSON N P, et al. Acute and protracted cell death in light-induced retinal degeneration in the canine model of rhodopsin autosomal dominant retinitis pigmentosa [J]. Investigative Ophthalmology and Visual Science, 2017, 58(1): 270–281. DOI: 10.1167/iovs.16-20749.
    [25] BROWN E E, DEWEERD A J, ILDEFONSO C J, et al. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors [J]. Redox Biology, 2019, 24: 101201. DOI: 10.1016/j.redox.2019.101201.
  • 加载中
图(32)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  39
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-10-24
  • 网络出版日期:  2024-10-29
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回