装配式混凝土遮弹层抗弹体侵彻的数值模拟和工程设计方法

杨耀宗 孔祥振 汤俊杰 方秦

杨耀宗, 孔祥振, 汤俊杰, 方秦. 装配式混凝土遮弹层抗弹体侵彻的数值模拟和工程设计方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0279
引用本文: 杨耀宗, 孔祥振, 汤俊杰, 方秦. 装配式混凝土遮弹层抗弹体侵彻的数值模拟和工程设计方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0279
YANG Yaozong, KONG Xiangzhen, TANG Junjie, FANG Qin. Numerical simulation and engineering design method for prefabricated concrete bursting layer subjected to projectile penetration[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0279
Citation: YANG Yaozong, KONG Xiangzhen, TANG Junjie, FANG Qin. Numerical simulation and engineering design method for prefabricated concrete bursting layer subjected to projectile penetration[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0279

装配式混凝土遮弹层抗弹体侵彻的数值模拟和工程设计方法

doi: 10.11883/bzycj-2024-0279
基金项目: 国家自然科学基金(52178515)
详细信息
    作者简介:

    杨耀宗(1998- ),男,博士研究生,yyz542968@163.com

    通讯作者:

    孔祥振(1988- ),男,博士,副教授,ouckxz@163.com

  • 中图分类号: O385

Numerical simulation and engineering design method for prefabricated concrete bursting layer subjected to projectile penetration

  • 摘要: 为更好地将湿接缝+短钢筋装配式混凝土遮弹层应用于防护工程中,首先,基于已有弹体侵彻整体式和装配式靶体的试验,利用Kong-Fang混凝土材料模型和LS-DYNA中的光滑粒子伽辽金算法建立了相应的数值模型,并得到了验证;然后,基于验证的数值模型,系统探讨了装配块尺寸、湿接缝宽度、短钢筋锚固长度、短钢筋间距和短钢筋直径对装配式靶体抗侵彻性能的影响,给出了装配式混凝土遮弹层的工程设计方法;最后,采用该方法设计了抗2种典型战斗部侵彻的装配式高性能混凝土遮弹层。数值模拟结果表明:装配块尺寸对装配式靶体的抗侵彻性能影响较小,而增加湿接缝宽度能够有效提升装配式靶体的抗侵彻性能,即湿接缝宽度越大,装配率越低,靶体整体性就越好。短钢筋是加强装配块与湿接缝连接的有效措施,与增加短钢筋直径相比,增加短钢筋锚固长度和减小短钢筋间距能更显著地提升装配式靶体的抗侵彻性能。
  • 图  1  整体式靶体[7]和装配式靶体[8]的剖面图

    Figure  1.  Cross-sectional views of monolithic target[7] and prefabricated target[8]

    图  2  整体式靶体和装配式靶体的数值模型

    Figure  2.  Numerical models for monolithic target and prefabricated target

    图  3  侵彻深度、靶体开坑损伤破坏的数值模拟结果与试验值的对比

    Figure  3.  Comparisons of numerically predicted penetration depth and damage contour at frontal surfaces with test data

    图  4  基准工况的数值模型及模拟结果[8]

    Figure  4.  Numerical model and results for benchmark[8]

    图  5  不同装配块尺寸的靶体数值模型

    Figure  5.  Numerical models for prefabricated targets with various sizes of prefabricated blocks

    图  6  不同装配块尺寸工况下弹体的侵彻深度及加速度时程曲线

    Figure  6.  Penetration depth and time history curves of projectile acceleration for cases with various block sizes

    图  7  不同湿接缝宽度的靶体数值模型

    Figure  7.  Numerical models for prefabricated targets with various widths of wet joints

    图  8  不同湿接缝宽度工况下弹体侵彻深度及加速度时程曲线

    Figure  8.  Penetration depth and time history curves of projectile acceleration for cases with various widths of wet joints

    图  9  不同短钢筋锚固长度的装配块

    Figure  9.  Prefabricated blocks with different anchorage lengths of rebars

    图  10  预制块内短钢筋的布置(M*=9.375)

    Figure  10.  Layout of rebars inside prefabricated block (M*=9.375)

    图  11  M*=3.125和M*=12.500工况下靶体内钢筋等效塑性应变云图

    Figure  11.  Numerically predicted effective plastic strain contour of rebars for Case M-3d0 and M-12d0

    图  12  不同短钢筋间距的装配块

    Figure  12.  Prefabricated blocks with various spacing of rebars

    图  13  战斗部的有限元模型

    Figure  13.  Numerical models for two warheads

    图  14  装配块的尺寸信息(单位:mm)

    Figure  14.  Dimensions of prefabricated blocks for two warheads (unit: mm)

    图  15  2种装配式靶体的数值模型

    Figure  15.  Numerical models for two prefabricated targets

    图  16  2种装配式靶体损伤破坏云图

    Figure  16.  Damage contours in two prefabricated targets

    表  1  侵彻试验结果[7-8]

    Table  1.   Experimental results for penetration tests[7-8]

    试验编号 弹体质量/kg 侵彻速度/(m·s−1) 侵彻深度/m Dh/m Dv/m D1/m D2/m Dm/m
    ZT-1 35.58 365 0.75 1.04 1.06 1.05 1.15 1.08
    ZP-2 35.66 359 0.74 0.43 0.54 0.69 0.69 0.59
    下载: 导出CSV

    表  2  不同装配块尺寸工况下弹体侵彻深度和靶体损伤云图

    Table  2.   Numerically predicted penetration depth and damage contours in prefabricated targets with various block sizes

    V* 装配率/% h* 损伤云图 V* 装配率/% h* 损伤云图
    3.2 39 1.176 5.6 54 1.167
    4.0 46 1.174 6.4 57 1.172
    4.8 50 1.174 7.2 63 1.162
    下载: 导出CSV

    表  3  不同湿接缝宽度工况下弹体侵彻深度和靶体损伤云图

    Table  3.   Numerically predicted penetration depth and damage contours in prefabricated targets with various widths of wet joints

    S* 装配率/% h* 损伤云图 S* 装配率/% h* 损伤云图
    0.8 69 1.256 2.4 39 1.151
    1.2 59 1.235 2.8 35 1.140
    1.6 50 1.206 3.2 32 1.120
    2.0 46 1.174 4.0 26 1.096
    下载: 导出CSV

    表  4  不同短钢筋锚固长度工况下弹体侵彻深度和靶体损伤云图

    Table  4.   Numerically predicted penetration depth and damage contours in targets for different anchorage lengths of rebars

    M* 配筋率/% h* 损伤云图 M* 配筋率/% h* 损伤云图
    0 0 1.174 9.375 1.18 1.098
    3.125 0.40 1.132 12.500 1.57 1.083
    6.250 0.81 1.115
    下载: 导出CSV

    表  5  不同短钢筋间距工况下弹体侵彻深度和靶体损伤云图

    Table  5.   Numerically predicted penetration depth and damage contours in targets for different spacing of rebars

    J* 配筋率/% h* 损伤云图 J* 配筋率/% h* 损伤云图
    4.4 0.37 1.152 1.2 1.63 1.098
    3.6 0.82 1.129 0.9 2.00 1.083
    1.8 1.18 1.098
    下载: 导出CSV

    表  6  不同短钢筋直径工况下弹体侵彻深度和靶体损伤云图

    Table  6.   Numerically predicted penetration depth and damage contours in targets for different diameters of rebars

    d0/mm 配筋率/% h* 损伤云图 d0/m 配筋率/% h* 损伤云图
    6 0.17 1.142 22 2.24 1.085
    12 0.67 1.135 25 2.89 1.082
    16 1.18 1.098
    下载: 导出CSV

    表  7  2种战斗部参数[25-26]

    Table  7.   Parameters of two warheads[25-26]

    战斗部 直径/
    m
    质量/
    kg
    长度/
    m
    壁厚/
    mm
    头部
    曲径比
    SDB 0.152 113 1.8 10.8 3
    BLU-109/B 0.368 874 2.4 25.4 3
    下载: 导出CSV
  • [1] BEN-DOR G, DUBINSKY A, ELPERIN T. Ballistic properties of multilayered concrete shields [J]. Nuclear Engineering and Design, 2009, 239(10): 1789–1794. DOI: 10.1016/j.nucengdes.2009.05.015.
    [2] WU H, FANG Q, PENG Y, et al. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner [J]. International Journal of Impact Engineering, 2015, 76: 232–250. DOI: 10.1016/j.ijimpeng.2014.10.010.
    [3] BISHT M, IQBAL M A. Numerical study on single and multi-layered concrete target against steel projectile impact [J]. Mechanics of Solids, 2023, 58(1): 189–201. DOI: 10.3103/S0025654422600982.
    [4] ZUKAS J A, SCHEFFLER D R. Impact effects in multilayered plates [J]. International Journal of Solids and Structures, 2001, 38(19): 3321–3328. DOI: 10.1016/S0020-7683(00)00260-2.
    [5] ONG C W R, ZHANG M H, DU H J, et al. Cellular cement composites against projectile impact [J]. International Journal of Impact Engineering, 2015, 86: 13–26. DOI: 10.1016/j.ijimpeng.2015.06.020.
    [6] BOOKER P M, CARGILE J D, KISTLER B L, et al. Investigation on the response of segmented concrete targets to projectile impacts [J]. International Journal of Impact Engineering, 2009, 36(7): 926–939. DOI: 10.1016/j.ijimpeng.2008.10.006.
    [7] YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
    [8] YANG Y Z, KONG X Z, TANG J J, et al. Experimental and numerical investigation on projectile penetration resistance of prefabricated concrete targets [J]. International Journal of Impact Engineering, 2024, 193: 105053. DOI: 10.1016/j.ijimpeng.2024.105053.
    [9] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [10] ACI Committee 318. Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05) [R]. Farmington Hills, Michigan: American Concrete Institute, 2004.
    [11] HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
    [12] YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
    [13] XU S L, WU P, LI Q H, et al. Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive [J]. Cement and Concrete Composites, 2021, 119: 103989. DOI: 10.1016/j.cemconcomp.2021.103989.
    [14] YUAN P C, XU S C, LIU J, et al. Experimental and numerical study of blast resistance of geopolymer based high performance concrete sandwich walls incorporated with metallic tube core [J]. Engineering Structures, 2023, 278: 115505. DOI: 10.1016/j.engstruct.2022.115505.
    [15] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
    [16] 方秦, 高矗, 孔祥振, 等. 主体结构荷载可控的新型组合式防护结构(Ⅰ): 抗爆机制 [J]. 爆炸与冲击, 2024. DOI: 10.11883/bzycj-2023-0459.

    FANG Q, GAO C, KONG X Z, et al. A new composite protective structure based on controllability of blast load on structure layer (Ⅰ): blast resistance mechanism [J]. Explosion and Shock Waves, 2024. DOI: 10.11883/bzycj-2023-0459.
    [17] 方秦, 高矗, 孔祥振, 等. 主体结构荷载可控的新型组合式防护结构(Ⅱ): 影响因素及设计理念 [J]. 爆炸与冲击, 2024. DOI: 10.11883/bzycj-2023-0463.

    FANG Q, GAO C, KONG X Z, et al. A new composite protective structure based on controllability of blast load on structure layer (Ⅱ): influence factors and design concept [J]. Explosion and Shock Waves, 2024. DOI: 10.11883/bzycj-2023-0463.
    [18] TELAND J A, SJØL H. Penetration into concrete by truncated projectiles [J]. International Journal of Impact Engineering, 2004, 30(4): 447–464. DOI: 10.1016/S0734-743X(03)00073-3.
    [19] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [20] 楼建锋, 王政, 朱建士, 等. 含筋率和弹着点对钢筋混凝土抗侵彻性能的影响 [J]. 爆炸与冲击, 2010, 30(2): 178–182. DOI: 10.11883/1001-1455(2010)02-0178-05.

    LOU J F, WANG Z, ZHU J S, et al. Effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete [J]. Explosion and Shock Waves, 2010, 30(2): 178–182. DOI: 10.11883/1001-1455(2010)02-0178-05.
    [21] 朱擎, 李述涛, 陈叶青. 配筋对超高性能混凝土抗侵彻性能的影响 [J]. 工程力学, 2023, 40(S1): 62–73, 91. DOI: 10.6052/j.issn.1000-4750.2022.05.S046.

    ZHU Q, LI S T, CHEN Y Q. Influence of reinforcement on anti-penetration resistance of ultra-high-performance concrete [J]. Engineering Mechanics, 2023, 40(S1): 62–73, 91. DOI: 10.6052/j.issn.1000-4750.2022.05.S046.
    [22] LEE S, KIM C, YU Y, et al. Effect of reinforcing steel on the impact resistance of reinforced concrete panel subjected to hard-projectile impact [J]. International Journal of Impact Engineering, 2021, 148: 103762. DOI: 10.1016/j.ijimpeng.2020.103762.
    [23] 刘志林, 孙巍巍, 王晓鸣, 等. 卵形弹丸垂直侵彻钢筋混凝土靶的工程解析模型 [J]. 弹道学报, 2015, 27(3): 84–90. DOI: 10.3969/j.issn.1004-499X.2015.03.016.

    LIU Z L, SUN W W, WANG X M, et al. Engineering analytical model of ogive-nose steel projectiles vertically penetrating reinforced concrete target [J]. Journal of Ballistics, 2015, 27(3): 84–90. DOI: 10.3969/j.issn.1004-499X.2015.03.016.
    [24] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2010.
    [25] 甄建伟, 曹凌宇, 孙福. 弹药毁伤效应数值仿真技术 [M]. 北京: 北京理工大学出版社, 2018.

    ZHEN J W, CAO L Y, SUN F. Numerical simulation of ammunition damage effect [M]. Beijing: Beijing Institute of Technology Press, 2018.
    [26] 严平, 谭波, 苗润, 等. 战斗部及其毁伤原理 [M]. 北京: 国防工业出版社, 2020.
    [27] 洪智捷, 杨耀宗, 孔祥振, 等. 刚性弹侵彻/贯穿混凝土靶体的工程实用化计算模型 [J]. 爆炸与冲击, 2023, 43(8): 083302. DOI: 10.11883/bzycj-2022-0482.

    HONG Z J, YANG Y Z, KONG X Z, et al. Practical engineering calculation models for rigid projectile penetrating and perforating into concrete target [J]. Explosion and Shock Waves, 2023, 43(8): 083302. DOI: 10.11883/bzycj-2022-0482.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  12
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 修回日期:  2024-09-30
  • 网络出版日期:  2024-10-23

目录

    /

    返回文章
    返回