受冲击荷载后未失效电池力学性能和电性能的劣化

魏和光 周名哲 朱瑞卿 胡玲玲

魏和光, 周名哲, 朱瑞卿, 胡玲玲. 受冲击荷载后未失效电池力学性能和电性能的劣化[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0312
引用本文: 魏和光, 周名哲, 朱瑞卿, 胡玲玲. 受冲击荷载后未失效电池力学性能和电性能的劣化[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0312
WEI Heguang, ZHOU Mingzhe, ZHU Ruiqing, HU Lingling. Mechanical and electrical degradation of impaired batteries after impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0312
Citation: WEI Heguang, ZHOU Mingzhe, ZHU Ruiqing, HU Lingling. Mechanical and electrical degradation of impaired batteries after impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0312

受冲击荷载后未失效电池力学性能和电性能的劣化

doi: 10.11883/bzycj-2024-0312
基金项目: 国家自然科学基金(12202511,12172388);深圳市科技计划项目(KJZD20230923114618038)
详细信息
    作者简介:

    魏和光(2000- ),男,硕士研究生,weihg5@mail2.sysu.edu.cn

    通讯作者:

    胡玲玲(1980- ),女,博士,教授,hulingl@mail.sysu.edu.cn

  • 中图分类号: O347.3

Mechanical and electrical degradation of impaired batteries after impact loading

  • 摘要: 为探究小能量冲击对锂电池安全的影响,通过冲击-压缩顺序加载实验对受动态荷载后未失效的软包电池二次受载时的力学响应及失效行为进行评估,结合电性能测试与内部结构损伤分析探究较弱冲击荷载下的电池性能劣化行为,并据此提出弱冲击后电池状态量化评估方法。结果表明:3、5和7 J的冲击能量下电池即使未失效,其内部机械完整性也已经受到一定损伤,再次受载时的失效位移相比新电池分别约降低18%、21%和34%;失效对应变形能分别下降40%、47%和67%,且电性能劣化现象明显,容量分别变为新电池的99.4%、93.6%和87.9%;内阻分别上升4.2%、16.2%和28.7%。二次承载能力下降和电性能劣化程度与冲击能量呈正相关。揭示了电极的冲击变形损伤与电池整体力电性能变化的联系。
  • 图  1  软包电池结构示意图

    Figure  1.  Pouch battery structure illustration

    图  2  实验流程

    Figure  2.  Experimental procedure

    图  3  HPPC测试过程中电池相对电流随时间的变化

    Figure  3.  Variation of relative current in a battery with time during HPPC test

    图  4  电池在不同能量冲击过程中的力电响应

    Figure  4.  Electrical and mechanical responses of the pouch cells under different impact energy

    图  5  冲击后电池电性能变化

    Figure  5.  Electrical performance variation of batteries after impact

    图  6  不同能量冲击后,电池首层正负极和隔膜的冲击变形损伤

    Figure  6.  Impact deformation and damage of the first layers of the positive and negative electrodes and the separators of the batteries impacted by different energies

    图  7  不同能量冲击后,电池第18层正负极的冲击变形损伤

    Figure  7.  Impact deformation and damage of the 18th layers of the positive and negative electrodes of the batteries impacted by different energies

    图  8  遭遇过不同冲击工况的电池受准静态压入时的力电响应

    Figure  8.  Mechanical and electrical responses of the batteries impacted by different energies to quasi-static indentation

    图  9  不同冲击工况后电池受准静态压入时的刚度变化

    Figure  9.  Variation of the stiffness of the batteries impacted by different energies during quasi-static indentation

    图  10  遭受不同能量冲击后电池受准静态压入时的等效刚度、失效位移、峰值力及可承受的变形能

    Figure  10.  Effective stiffness, failure displacement, peak force and deformation energy at failure of different-energy-impacted batteries under quasi-static indentation

    图  11  冲击后电池电性能和力学性能劣化的量化评估

    Figure  11.  Quantitative evaluation of electrical and mechanical performance degradation of the impacted batteries

  • [1] 陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状 [J]. 机械工程学报, 2019, 55(24): 93–104,116. DOI: 10.3901/JME.2019.24.093.

    CHEN Z Y, XIONG R, SUN F C. Research status and analysis for battery safety accidents in electric vehicles [J]. Journal of Mechanical Engineering, 2019, 55(24): 93–104,116. DOI: 10.3901/JME.2019.24.093.
    [2] LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives [J]. Energy Storage Materials, 2021, 35: 470–499. DOI: 10.1016/j.ensm.2020.11.026.
    [3] 周青, 夏勇, 聂冰冰, 等. 汽车碰撞安全与轻量化研发中的若干挑战性课题 [J]. 中国公路学报, 2019, 32(7): 1–14. DOI: 10.19721/j.cnki.1001-7372.2019.07.001.

    ZHOU Q, XIA Y, NIE B B, et al. Challenging topics in research of vehicle crash safety and lightweighting [J]. China Journal of Highway and Transport, 2019, 32(7): 1–14. DOI: 10.19721/j.cnki.1001-7372.2019.07.001.
    [4] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [5] XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. DOI: 10.1016/j.engfailanal.2015.03.025.
    [6] AVDEEV I, GILAKI M. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact [J]. Journal of Power Sources, 2014, 271: 382–391. DOI: 10.1016/j.jpowsour.2014.08.014.
    [7] GILAKI M, AVDEEV I. Impact modeling of cylindrical lithium-ion battery cells: a heterogeneous approach [J]. Journal of Power Sources, 2016, 328: 443–451. DOI: 10.1016/j.jpowsour.2016.08.034.
    [8] KISTERS T, SAHRAEI E, WIERZBICKI T, et al. Dynamic impact tests on lithium-ion cells [J]. International Journal of Impact Engineering, 2017, 108: 205–216. DOI: 10.1016/j.ijimpeng.2017.04.025.
    [9] KERMANI G, SAHRAEI E. Dynamic impact response of lithium-ion batteries, constitutive properties and failure model [J]. RSC Advances, 2019, 9(5): 2464–2473. DOI: 10.1039/c8ra08898e.
    [10] WANG W W, YANG S, LIN C, et al. Investigation of mechanical property of cylindrical lithium-ion batteries under dynamic loadings [J]. Journal of Power Sources, 2020, 451: 227749. DOI: 10.1016/j.jpowsour.2020.227749.
    [11] LI Y D, WANG W W, LIN C, et al. A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression [J]. Energy, 2021, 215: 119050. DOI: 10.1016/j.energy.2020.119050.
    [12] JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–960. DOI: 10.1016/j.energy.2018.10.142.
    [13] 吕家慜. 基于深度调查电动汽车碰撞事故特征分析 [J]. 农业装备与车辆工程, 2022, 60(6): 105–110. DOI: 10.3969/j.issn.1673-3142.2022.06.024.

    LÜ J M. Analysis of characteristics of electric vehicle collision accidents based on in-depth investigation [J]. Agricultural Equipment & Vehicle Engineering, 2022, 60(6): 105–110. DOI: 10.3969/j.issn.1673-3142.2022.06.024.
    [14] 司戈, 王青松. 锂离子电池火灾危险性及相关研究进展 [J]. 消防科学与技术, 2012, 31(9): 994–996. DOI: 10.3969/j.issn.1009-0029.2012.09.029.

    SI G, WANG Q S. Fire risk of lithium-ion battery and related study progress [J]. Fire Science and Technology, 2012, 31(9): 994–996. DOI: 10.3969/j.issn.1009-0029.2012.09.029.
    [15] 朱瑞卿, 胡玲玲, 周名哲. 锂电池多次冲击下的失效模式及损伤机制 [J]. 固体力学学报, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.

    ZHU R Q, HU L L, ZHOU M Z. Failure modes and damage mechanisms of lithium-ion batteries under repeated impacts [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.
    [16] PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems [J]. Journal of Power Sources, 2017, 360: 301–318. DOI: 10.1016/j.jpowsour.2017.03.042.
    [17] MEDDINGS N, HEINRICH M, OVERNEY F, et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review [J]. Journal of Power Sources, 2020, 480: 228742. DOI: 10.1016/j.jpowsour.2020.228742.
    [18] ZHU X Q, WANG H, ALLU S, et al. Investigation on capacity loss mechanisms of lithium-ion pouch cells under mechanical indentation conditions [J]. Journal of Power Sources, 2020, 465: 228314. DOI: 10.1016/j.jpowsour.2020.228314.
    [19] ZHU X Q, WANG Z P, WANG C, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: degradation and failure mechanisms [J]. Journal of the Electrochemical Society, 2018, 165(16): A3613–A3629. DOI: 10.1149/2.0161816jes.
    [20] LI J, MURPHY E, WINNICK J, et al. Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling [J]. Journal of Power Sources, 2001, 102(1/2): 294–301. DOI: 10.1016/S0378-7753(01)00821-7.
    [21] MÜLLER V, SCURTU R G, MEMM M, et al. Study of the influence of mechanical pressure on the performance and aging of lithium-ion battery cells [J]. Journal of Power Sources, 2019, 440: 227148. DOI: 10.1016/j.jpowsour.2019.227148.
    [22] BARAI A, TANGIRALA R, UDDIN K, et al. The effect of external compressive loads on the cycle lifetime of lithium-ion pouch cells [J]. Journal of Energy Storage, 2017, 13: 211–219. DOI: 10.1016/j.est.2017.07.021.
    [23] FERG E, ROSSOUW C, LOYSON P. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: a comparison between Li-ion and valve regulated lead acid batteries [J]. Journal of Power Sources, 2013, 226: 299–305. DOI: 10.1016/j.jpowsour.2012.10.087.
    [24] PFRANG A, KERSYS A, KRISTON A, et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells [J]. Journal of Power Sources, 2018, 392: 168–175. DOI: 10.1016/j.jpowsour.2018.03.065.
  • 加载中
图(11)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  37
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-09-11
  • 网络出版日期:  2024-09-12

目录

    /

    返回文章
    返回