应变率/温度耦合下动力锂离子电池隔膜的压缩力学行为与本构建模

黄庆丹 李红刚 李璟秋 康煌 廖湘标 张超

黄庆丹, 李红刚, 李璟秋, 康煌, 廖湘标, 张超. 应变率/温度耦合下动力锂离子电池隔膜的压缩力学行为与本构建模[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0329
引用本文: 黄庆丹, 李红刚, 李璟秋, 康煌, 廖湘标, 张超. 应变率/温度耦合下动力锂离子电池隔膜的压缩力学行为与本构建模[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0329
HUANG Qingdan, LI Honggang, LI Jingqiu, KANG Huang, LIAO Xiangbiao, ZHANG Chao. Compressive mechanical behavior and constitutive modeling of power lithium-ion battery separators under strain rate-temperature coupling[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0329
Citation: HUANG Qingdan, LI Honggang, LI Jingqiu, KANG Huang, LIAO Xiangbiao, ZHANG Chao. Compressive mechanical behavior and constitutive modeling of power lithium-ion battery separators under strain rate-temperature coupling[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0329

应变率/温度耦合下动力锂离子电池隔膜的压缩力学行为与本构建模

doi: 10.11883/bzycj-2024-0329
基金项目: 国家自然科学基金(12302463);国家资助博士后研究人员计划(GZC20233320);中国博士后基金面上项目(2023M730402)
详细信息
    作者简介:

    黄庆丹(2001- ),女,硕士研究生,huang2001@mail.nwpu.edu.cn

    通讯作者:

    李红刚(1992- ),男,博士,助理研究员,honggangli@cqu.edu.cn

    张 超(1987- ),男,博士,教授,chaozhang@nwpu.edu.cn

  • 中图分类号: O347.3

Compressive mechanical behavior and constitutive modeling of power lithium-ion battery separators under strain rate-temperature coupling

  • 摘要: 在锂离子电池的应用中,隔膜的力学性能对电池安全性至关重要。为了系统评估隔膜在应变率和温度耦合条件下的压缩力学行为,在不同应变率和温度条件下进行了准静态和动态压缩测试,并深入分析了温度和应变率的耦合作用对隔膜力学性能的影响。结果表明,隔膜的力学行为对应变率和温度表现出显著的敏感性,在低应变率下,隔膜主要经历塑性变形,而在高应变率下则可能出现复杂的动态失效模式,温度升高导致隔膜的弹性模量和屈服应力降低。温度与应变率的耦合作用通过改变隔膜的失效模式,进一步影响其压缩强度。基于实验数据,进一步建立了考虑温度和应变率耦合效应的电池隔膜非线性黏弹性本构模型,为锂离子电池的安全设计和性能优化提供参考依据。
  • 图  1  锂离子电池隔膜及试样制备和表征

    Figure  1.  Lithium-ion battery separator as well as specimen preparation and characterization

    图  2  准静态试验装置

    Figure  2.  Quasi-static experimental device

    图  3  动态加载装置

    Figure  3.  Dynamic loading device

    图  4  25 ℃下0.001 s−1应变率的压缩力学性能测试结果

    Figure  4.  Compression test results for 0.001 s−1 strain rate at 25 °C

    图  5  不同应变率下力学性能比较与关键参数演化

    Figure  5.  Comparison of mechanical properties and evolution of key parameters under different strain rates

    图  6  100 ℃下应力-应变关系测试结果(以0.01 s−1为例)

    Figure  6.  Stress-strain relationship test results at 100 ℃ (example at 0.01 s−1)

    图  7  不同温度和应变率下的隔膜的压缩应力-应变测试结果

    Figure  7.  Stress-strain test results at different temperatures and strain rates

    图  8  不同温度和应变率下隔膜压缩力学性能关键参数演变

    Figure  8.  Evolution of key parameters of compressive mechanical properties of separator at different temperatures and strain rates

    图  9  不同应变率和温度下压缩加载后的隔膜损伤形貌

    Figure  9.  Damage morphology of separator after compressive loading at different strain rates and temperatures

    图  10  不同温度下测试后隔膜表面的微观形貌

    Figure  10.  Microscopic morphology of separator surface after testing at different temperatures

    图  11  应变率相关的模型拟合

    Figure  11.  Strain rate dependent model fitting

    图  12  应变率/温度相关的模型拟合

    Figure  12.  Strain rate/temperature-dependent model fitting

  • [1] ZHANG J N, ZHANG L, SUN F C, et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application [J]. IEEE Access, 2018, 6: 23848–23863. DOI: 10.1109/ACCESS.2018.2824838.
    [2] 李红刚, 张超, 曹俊超, 等. 锂离子电池碰撞安全仿真方法的研究进展与展望 [J]. 机械工程学报, 2022, 58(24): 121–144. DOI: 10.3901/JME.2022.24.121.

    LI H G, ZHANG C, CAO J C, et al. Advances and perspectives on modeling methods for collision safety of lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(24): 121–144. DOI: 10.3901/JME.2022.24.121.
    [3] 朱晓庆, 王震坡, WANG H, 等. 锂离子动力电池热失控与安全管理研究综述 [J]. 机械工程学报, 2020, 56(14): 91–118. DOI: 10.3901/JME.2020.14.091.

    ZHU X Q, WANG Z P, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles [J]. Journal of Mechanical Engineering, 2020, 56(14): 91–118. DOI: 10.3901/JME.2020.14.091.
    [4] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [5] LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse [J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f.
    [6] GAINES L, CUENCA R. Costs of lithium-ion batteries for vehicles [R]. Argonne National Laboratory, 2000: 73. DOI: 10.2172/761281.
    [7] LOVE C T. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators [J]. Journal of Power Sources, 2011, 196(5): 2905–2912. DOI: 10.1016/j.jpowsour.2010.10.083.
    [8] ZHANG C, XU J, CAO L, et al. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries [J]. Journal of Power Sources, 2017, 357: 126–137. DOI: 10.1016/j.jpowsour.2017.04.103.
    [9] WANG L B, YIN S, ZHANG C, et al. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries [J]. Journal of Power Sources, 2018, 392: 265–273. DOI: 10.1016/j.jpowsour.2018.05.007.
    [10] JI Y P, CHEN X P, WANG T, et al. Coupled effects of charge–discharge cycles and rates on the mechanical behavior of electrodes in lithium–ion batteries [J]. Journal of Energy Storage, 2020, 30: 101577. DOI: 10.1016/j.est.2020.101577.
    [11] ZHU J E, LI W, XIA Y, et al. Testing and modeling the mechanical properties of the granular materials of graphite anode [J]. Journal of the Electrochemical Society, 2018, 165(5): A1160–A1168. DOI: 10.1149/2.0141807jes.
    [12] FADILLAH H, SANTOSA S P, GUNAWAN L, et al. Dynamic high strain rate characterization of lithium-ion nickel–cobalt–aluminum (NCA) battery using split Hopkinson tensile/pressure bar methodology [J]. Energies, 2020, 13(19): 5061. DOI: 10.3390/en13195061.
    [13] WANG L B, YIN S, YU Z X, et al. Unlocking the significant role of shell material for lithium-ion battery safety [J]. Materials and Design, 2018, 160: 601–610. DOI: 10.1016/j.matdes.2018.10.002.
    [14] KALNAUS S, KUMAR A, WANG Y L, et al. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading [J]. Journal of Power Sources, 2018, 378: 139–145. DOI: 10.1016/j.jpowsour.2017.12.029.
    [15] XU J, WANG L B, GUAN J, et al. Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries [J]. Materials & Design, 2016, 95: 319–328. DOI: 10.1016/j.matdes.2016.01.082.
    [16] SHEIDAEI A, XIAO X R, HUANG X S, et al. Mechanical behavior of a battery separator in electrolyte solutions [J]. Journal of Power Sources, 2011, 196(20): 8728–8734. DOI: 10.1016/j.jpowsour.2011.06.026.
    [17] KALNAUS S, WANG H, WATKINS T R, et al. Features of mechanical behavior of EV battery modules under high deformation rate [J]. Extreme Mechanics Letters, 2019, 32: 100550. DOI: 10.1016/j.eml.2019.100550.
    [18] ZHU J E, LUO H L, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading [J]. International Journal of Impact Engineering, 2019, 131: 78–84. DOI: 10.1016/j.ijimpeng.2019.05.003.
    [19] ZHU J E, ZHANG X W, LUO H L, et al. Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests [J]. Applied Energy, 2018, 224: 251–266. DOI: 10.1016/j.apenergy.2018.05.007.
    [20] CANNARELLA J, ARNOLD C B. Ion transport restriction in mechanically strained separator membranes [J]. Journal of Power Sources, 2013, 226: 149–155. DOI: 10.1016/j.jpowsour.2012.10.093.
    [21] KALNAUS S, WANG Y L, LI J L, et al. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries [J]. Extreme Mechanics Letters, 2018, 20: 73–80. DOI: 10.1016/j.eml.2018.01.006.
    [22] AVDEEV I, MARTINSEN M, FRANCIS A. Rate-and temperature-dependent material behavior of a multilayer polymer battery separator [J]. Journal of Materials Engineering and Performance, 2014, 23(1): 315–325. DOI: 10.1007/s11665-013-0743-4.
    [23] LI H G, GU J H, ZHOU D, et al. Rate-dependent damage and failure behavior of lithium-ion battery electrodes [J]. Engineering Fracture Mechanics, 2024, 303: 110143. DOI: 10.1016/j.engfracmech.2024.110143.
    [24] LI H G, GU J H, PAN Y J, et al. On the strain rate-dependent mechanical behavior of PE separator for lithium-ion batteries [J]. International Journal of Impact Engineering, 2024, 194: 105079. DOI: 10.1016/j.ijimpeng.2024.105079.
    [25] MIAO Y G, DU B, MA C B, et al. Some fundamental problems concerning the measurement accuracy of the Hopkinson tension bar technique [J]. Measurement Science and Technology, 2019, 30(5): 055009. DOI: 10.1088/1361-6501/ab01b5.
    [26] SIVIOUR C R, JORDAN J L. High strain rate mechanics of polymers: a review [J]. Journal of Dynamic Behavior of Materials, 2016, 2(1): 15–32. DOI: 10.1007/s40870-016-0052-8.
    [27] DING L, LI D D, DU F H, et al. Mechanical behaviors and ion transport variation of lithium-ion battery separators under various compression conditions [J]. Journal of Power Sources, 2022, 543: 231838. DOI: 10.1016/j.jpowsour.2022.231838.
    [28] RICHETON J, AHZI S, VECCHIO K S, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress [J]. International journal of solids and structures, 2006, 43(7/8): 2318–2335. DOI: 10.1016/j.ijsolstr.2005.06.040.
    [29] ARRUDA E M, BOYCE M C, JAYACHANDRAN R. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers [J]. Mechanics of Materials, 1995, 19(2/3): 193–212. DOI: 10.1016/0167-6636(94)00034-e.
    [30] CANNARELLA J, LIU X Y, LENG C Z, et al. Mechanical properties of a battery separator under compression and tension [J]. Journal of the Electrochemical Society, 2014, 161(11): F3117–F3122. DOI: 10.1149/2.0191411jes.
    [31] ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [32] LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027.
    [33] WANG L L, LABIBES K, AZARI Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars [J]. International Journal of Impact Engineering, 1994, 15(5): 669–686. DOI: 10.1016/0734-743x(94)90166-i.
    [34] YANG L M, WANG L L, ZHU Z X. A micromechanical analysis of the nonlinear elastic and viscoelastic constitutive relation of a polymer filled with rigid particles [J]. Acta Mechanica Sinica, 1994, 10(2): 176–185. DOI: 10.1007/bf02486588.
    [35] 王哲君, 强洪夫, 王广, 等. 中应变率下HTPB推进剂压缩力学性能和本构模型研究 [J]. 推进技术, 2016, 37(4): 776–782. DOI: 10.13675/j.cnki.tjjs.2016.04.023.

    WANG Z J, QIANG H F, WANG G, et al. Mechanical properties and constitutive model for HTPB propellant under intermediate strain rate compression [J]. Journal of Propulsion Technology, 2016, 37(4): 776–782. DOI: 10.13675/j.cnki.tjjs.2016.04.023.
  • 加载中
图(12)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  17
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-07
  • 修回日期:  2024-11-06
  • 网络出版日期:  2024-11-07

目录

    /

    返回文章
    返回