• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

应变率/温度耦合下动力锂离子电池隔膜的压缩力学行为与本构建模

黄庆丹 李红刚 李璟秋 康煌 廖湘标 张超

李圣童, 汪维, 梁仕发, 桑琴扬, 郑荣跃. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应[J]. 爆炸与冲击, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495
引用本文: 黄庆丹, 李红刚, 李璟秋, 康煌, 廖湘标, 张超. 应变率/温度耦合下动力锂离子电池隔膜的压缩力学行为与本构建模[J]. 爆炸与冲击, 2025, 45(2): 021411. doi: 10.11883/bzycj-2024-0329
LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495
Citation: HUANG Qingdan, LI Honggang, LI Jingqiu, KANG Huang, LIAO Xiangbiao, ZHANG Chao. Compressive mechanical behavior and constitutive modeling of power lithium-ion battery separators under strain rate-temperature coupling[J]. Explosion And Shock Waves, 2025, 45(2): 021411. doi: 10.11883/bzycj-2024-0329

应变率/温度耦合下动力锂离子电池隔膜的压缩力学行为与本构建模

doi: 10.11883/bzycj-2024-0329
基金项目: 国家自然科学基金(12302463, 12302454);国家资助博士后研究人员计划(GZC20233320);中国博士后基金面上项目(2023M730402)
详细信息
    作者简介:

    黄庆丹(2001- ),女,硕士研究生,huang2001@mail.nwpu.edu.cn

    通讯作者:

    李红刚(1992- ),男,博士,助理研究员,honggangli@cqu.edu.cn

    张 超(1987- ),男,博士,教授,chaozhang@nwpu.edu.cn

  • 中图分类号: O347.3

Compressive mechanical behavior and constitutive modeling of power lithium-ion battery separators under strain rate-temperature coupling

  • 摘要: 在锂离子电池的应用中,隔膜的力学性能对电池安全性至关重要。为了系统评估隔膜在应变率和温度耦合条件下的压缩力学行为,在不同应变率和温度条件下进行了准静态和动态压缩测试,并深入分析了温度和应变率的耦合作用对隔膜力学性能的影响。结果表明:隔膜的力学行为对应变率和温度表现出显著的敏感性,在低应变率下,隔膜主要经历塑性变形,而在高应变率下则可能出现复杂的动态失效模式,温度升高导致隔膜的弹性模量和屈服应力降低;温度与应变率的耦合作用通过改变隔膜的失效模式,进一步影响其压缩强度。基于实验数据,进一步建立了考虑温度和应变率耦合效应的电池隔膜非线性黏弹性本构模型,为锂离子电池的安全设计和性能优化提供参考依据。
  • 近年来,世界范围内因意外和恐怖袭击引起的爆炸事件频繁发生。爆炸不仅使建筑物发生破坏和倒塌,还对人类财产和社会稳定造成极大危害。钢筋混凝土梁板组合结构是建筑结构中重要的组成部分,对其开展在爆炸荷载作用下的动态响应和损伤状况研究,可为建筑物抗爆性能和整体安全提供参考依据。

    爆炸载荷作用下,结构的应变率高达1 000 s−1或更高,钢筋和混凝土材料的强度明显提高,应力-应变关系变得更复杂,需要在材料模型中考虑非线性和应变速率效应等因素[1-3]。目前,对钢筋混凝土板、梁的抗爆性能已有一定研究成果。阎石等[4]将爆炸荷载作用下板的整体破坏模式分为弯曲破坏、剪切破坏和弯剪联合破坏;史祥生[5]和贾敬尧等[6]研究发现增加板厚、提高混凝土强度、增大钢筋直径、减少钢筋间距可以提高板的抗爆能力;李忠献等[7]使用剩余承载力为指标评估构件破坏等级,提出一种简化确定钢筋混凝土板超压-冲量曲线的方法;张想柏等[8]提出了震塌破坏系数,将近爆作用下钢筋混凝土板的典型破坏形态分为爆炸成坑、爆炸震塌、爆炸贯穿和爆炸冲切;Wang等[9]将接触爆炸作用下板的局部损伤划分为层裂、穿孔和冲孔失效;岳松林等[10]推导了板的临界震塌厚度和临界贯穿厚度的计算公式;方秦等[11-12]、柳锦春等[13]发现不同爆炸冲击峰值作用下钢筋混凝土梁会发生弯曲、弯剪、斜剪以及直剪型等不同破坏形态;崔满[14]通过实验探究了梁的裂缝开展、应变和位移变化情况,发现提高混凝土强度、增强箍筋用量可以提高梁的抗爆性能;汪维等[15]通过近爆实验发现钢筋混凝土梁的破坏形态与爆高和比例距离有关;唐德高等[16]研究发现使用高强钢筋可以提高大峰值爆炸荷载作用下梁变形恢复能力,降低位移峰值、裂缝长度和宽度。一些学者也进行了纤维材料加固后钢筋混凝土构件的动力响应和破坏机理分析[17-21]。已有工作多为近爆或接触爆炸作用下对单独构件的研究,缺乏梁板组合结构整体抗爆性能的研究结果,对长持时远爆荷载作用下构件响应的研究深度不够。

    为此,本文中,对长持时远场爆炸荷载作用下钢筋混凝土交叉梁板组合结构的毁伤特性和动态响应开展实验研究,分析组合结构的破坏模式。通过有限元软件Abaqus[22]建立钢筋混凝土交叉梁板组合结构数值模型,将组合结构在爆炸荷载作用下的数值模拟结果与实验结果进行对比分析,使用挠跨比划分钢筋混凝土梁板组合结构的破坏模式。

    采用激波管作为实验装置,对钢筋混凝土交叉梁板组合结构进行1炮次模拟核武器爆炸冲击波加载作用。激波管能够模拟远场爆炸产生的爆炸冲击波[23],调整炸药质量、高压段充压和实验段长度可以控制爆炸冲击波的超压强度和持续时间。激波管由图1所示4个主要部分组成:(1)高压段,用于产生爆炸冲击波;(2)膜片和切割索,膜片用于保持高压段充压,切割索用于破坏膜片,使高压段和过渡段连通;(3)实验段,长度可以调整,通过过渡段与高压段连接;(4)端部框架,用于固定试件。

    图  1  实验装置示意图
    Figure  1.  Schematic diagram of the experimental device

    钢筋混凝土梁板组合构件与外框采用C35混凝土整体现浇。十字交叉梁截面尺寸为117 mm×200 mm(宽×高),受拉区配筋为6HPB3006,受压区配筋为4HPB3006,箍筋配筋为HPB3006@70。板尺寸为2000 mm×2000 mm×80 mm(长×宽×厚),板内放置HRB40012@200双层双向钢筋。外框截面尺寸为250 mm×300 mm(宽×高),受拉区配筋为3HRB40020,受压区配筋为2HRB40014,箍筋配筋为HPB3008@100,浇筑时预留螺栓孔。组合构件尺寸及配筋示意图如图3所示,钢筋保护层厚度均为15 mm。构件安装示意图如图2所示。

    图  2  构件安装
    Figure  2.  Widget installation
    图  3  梁板组合构件尺寸及配筋示意图
    Figure  3.  Dimensions and reinforcement of a beam-slab composite structure

    实验前,在点爆源安装炸药,点爆源位置如图1所示。炸药安装完成后密封人员出入口,对高压段充压至150.0 kPa。通过实验构件框架上预留的螺栓孔,采用高强钢构螺栓将实验件固定在实验段的末端。背爆面中心点位置采用一个量程为100 mm的自动回弹位移传感器,型号为JWBS-100。在实验靶标框架顶部安装2个的爆炸冲击瞬态压力测量传感器,用于测量作用在靶标上的冲击波超压,型号为CYG401,灵敏度温度系数为3×10−4 FS/℃,位置如图3所示。实验时,在0 ms利用电子延时起爆器同时起爆切割索和1、2号点的炸药,同步启动测试系统,采集量测数据。

    实验测得的冲击波超压测试波形如图4所示,组合结构背爆面中心点位移如图5所示,实验后试件裂纹如图6所示。由图46可以看出,作用在靶标上的平均冲击波超压峰值为202.4 kPa,超压持续时间接近1000 ms,组合结构背爆面中心最大位移为5.9 mm,实验后,组合结构背爆面出现多条宽约0.5 mm的裂纹,组合构件处于轻微破坏状态,整体呈现弯曲破坏模式。在约76 ms时,爆炸冲击波传递到了梁板组合构件上,在图中表现为冲击波超压突然上升,达到峰值,组合构件开始响应,此时组合构件中板和交叉梁共同工作。

    图  4  边框上冲击波超压测试波形
    Figure  4.  Shock wave overpressure waveforms measured on the frame
    图  5  组合结构背爆面中心点位移时程曲线
    Figure  5.  Displacement-time curve at the center point of the backside of the beam-slab composite structure
    图  6  实验后裂纹
    Figure  6.  Cracks after experiment

    利用有限元软件Abaqus[22]进行建模,板、梁、框尺寸及配筋与实验构件相同,有限元模型如图7所示。混凝土为solid六面体单元,单元类型为C3D8R,钢筋为truss单元,单元类型为T3D2。采用 embedded region定义钢筋与混凝土的连接,取组合构件和框支座间的面定义面-面接触(surface to surface contact),边框的4个侧面均设置为固定约束。在网格划分中,将混凝土部分网格尺寸设置为20 mm,钢筋部分网格尺寸设置为50 mm。

    图  7  数值计算模型
    Figure  7.  Numerical calculation models

    混凝土使用软件提供的混凝土塑性损伤(concrete damaged plasticity, CDP)模型[24],按《混凝土结构设计规范》[25]规定,混凝土单轴受压的应力-应变关系为:

    σ=(1Dc)Ecε
    (1)

    式中:σ为应力,Dc为混凝土单轴受压损伤演化参数,Ec为混凝土弹性模量,ε为应变。且Dc为:

    Dc={1βncn1+xnx11βncαc(x1)2+xx1
    (2)

    式中:βc=fc/(Ecεc)fc为混凝土单轴抗压强度,其值按实际结构分析需要取标准值、设计值或平均值;εc为与单轴抗压强度fc相应的混凝土峰值压应变;x=ε/εcn=Ecεc/(Ecεcfc)αc为混凝土单轴受压应力-应变曲线下降段的参数值。混凝土单轴受拉的应力-应变关系为:

    σ=(1Dt)EcεDt={1βt(1.20.2x5)x11βtαt(x1)1.7+xx1
    (3)

    式中:βt=ft/(Ecεt)ft为混凝土单轴抗压强度,其值按实际结构分析需要取标准值、设计值或平均值;εt为与单轴抗压强度ft相应的混凝土峰值压应变;x=ε/εtαc为混凝土单轴受压应力-应变曲线下降段的参数值。

    参数经过换算调整后取值如表1所示[25-26],表中ρc为混凝土的密度,Ec为混凝土的弹性模量,µ为混凝土的泊松比,θ为膨胀角,e为偏心率,fb0/fc0为混凝土双轴与单轴抗压强度的比,K为影响屈服面形态的系数,η为黏性参数。

    表  1  混凝土材料模型参数[25-26]
    Table  1.  Parameters of the concrete material model[25-26]
    混凝土型号ρc/(kg·m−3)Ec/GPaµθefb0/fc0Kη
    C352 39031.50.2380.11.160.666 670.000 01
    下载: 导出CSV 
    | 显示表格

    对钢筋材料采用双折线模型,其应力-应变本构关系为:

    σs={Esεs0εsεsy0.01Es(εsεsy)+σsyεsyεsεsu0εsεsu
    (4)

    式中:σs为应力;Es为钢筋的弹性模量;εs为应变;σsy为钢筋的屈服强度,其值按实际结构分析需要取标准值、设计值或平均值;εsy为钢筋达到屈服强度时对应的应变;εsu为钢筋极限强度对应的峰值应变。钢筋模型材料参数的取值如表2所示[27],表中ρs为钢筋的密度,Es为钢筋弹性模量,ds为钢筋的直径,μs为钢筋的泊松比。

    表  2  钢筋材料模型参数[27]
    Table  2.  Parameters of the steel material model[27]
    钢筋型号ρs/(kg·m−3)Es/GPaσsy/MPads/mmµs
    HRB3357 853.2221.433580.3
    HPB3007 853.2224.630060.3
    HPB3007 853.2221.430080.3
    下载: 导出CSV 
    | 显示表格

    图4所示的2个超压传感器的测量结果取均值后进行降噪滤波处理,使用该简化载荷对模型进行加载,如图8所示,实验与数值模拟所得背爆面中心位移对比如图9所示,实验后构件背爆面裂缝趋势和数值模拟对比如图10所示,梁板组合结构在长持时爆炸荷载作用下破坏过程如图11所示。从图911可以看出,组合构件背爆面裂纹和中心点位移峰值的计算结果与实验结果吻合较好,本研究采用的数值模拟能够较好地展示钢筋混凝土梁板组合构件在爆炸荷载作用下的开裂、裂纹传播和混凝土破坏等过程,可用于研究梁板组合构件在爆炸载荷作用下的破坏形态和动态力学性能。

    图  8  简化加载曲线
    Figure  8.  Simplified loading curves
    图  9  背爆面中心点位移时程曲线
    Figure  9.  Displacement-time curves at the center point of the backside
    图  10  实验和数值模拟得到的裂缝
    Figure  10.  Experimental and simulated cracks
    图  11  简化爆炸冲击波载荷下结构的破坏过程
    Figure  11.  Failure process of the structure under simplified explosion shock wave loading

    图9可以看出,在0~76 ms时段,实验和数值模拟所得位移曲线的变化趋势几乎一致,二者峰值十分接近;实验位移曲线在220~1 000 ms时段振动趋于零,数值模拟位移曲线在200~1 000 ms时段振动趋近于4.0 mm;与数值模拟相比,实验背爆面中心点位移响应滞后约20 ms。爆后,实验和数值模拟的裂纹发展相似,但残余位移存在约4.2 mm的差别,这是因为:(1)现浇钢筋混凝土梁板组合试件为非均匀介质,存在初始缺陷,而数值模拟中使用的材料模型十分理想,导致实验与数值模拟结果不同;(2)建模使用的钢筋与混凝土constrain-embedded region约束的滑移与构件实际情况不同,造成差异;(3)在数值模拟中,背爆面的混凝土单元发生开裂损伤,单元损伤后弹性模量降低,导致回弹数值偏低。

    图11可以看出,在76 ms时,爆炸冲击波传递至梁板组合构件,迎爆面的框支座连接处、梁板连接处以及背爆面的混凝土发生轻微破坏;在200 ms时,构件迎爆面破坏发展至框支座连接处混凝土部分破坏、十字梁1/2跨度内应变较大,但交叉梁中心混凝土完整,且板与框支座连接处应变较大处位置分布与板中心处底层钢筋布置位置接近;到1 000 ms时,组合整体呈现弯曲破坏,背爆面出现多条裂纹,裂纹主要沿对角线分布,背爆面中心最大位移5.9 mm,组合构件处于轻微破坏状态。

    结合钢筋混凝土板和钢筋混凝土梁的破坏模式,在相同实验冲量(I=50 000 kPa·ms)、不同峰值爆炸荷载作用下对梁板组合结构的破坏模式进行研究。采用简化三角形爆炸压力时程曲线对梁板组合结构进行加载,模拟时,使用多组冲量相同、荷载峰值不同的简化爆炸荷载时程曲线对组合构件进行加载。取其中具有代表性的4组工况,荷载峰值pmax分别为200.0、208.3、217.4和222.2 kPa,对应的加载时间tp分别为500、480、460和450 ms,简化加载曲线如图12所示;在长持时、冲量相同、峰值不同的爆炸冲击荷载作用下梁板组合构件典型破坏如图13所示,tf为发生该破坏对应的时刻。

    图  12  简化三角形加载曲线
    Figure  12.  Simplified triangle load curves
    图  13  不同工况下构件背爆面、迎爆面以及半剖面的破坏
    Figure  13.  Failure in the backsides, frontsides and half sections of the structures under different load conditions

    数值模拟结果表明,在峰值为200.0 kPa的简化爆炸荷载作用下,梁板组合结构迎爆面框支座连接处混凝土破坏,背爆面中心板与十字梁交叉部分连接处发生少量混凝土剥落,组合结构发生轻微弯曲破坏,如图13(a)所示。

    在峰值为208.3 kPa的简化爆炸荷载作用下,组合结构迎爆面与框支座连接处混凝土破坏程度继续增加,背爆面中心发生混凝土层裂剥落,部分钢筋裸露,剥落部分与板中心处底层钢筋分布十分接近,沿对角线向外延伸,十字梁部分未发生混凝土剥落,组合构件发生弯剪组合破坏,如图13(b)所示。

    在峰值为217.4kPa的简化爆炸荷载作用下,迎爆面组合结构与框支座的连接处、十字梁混凝土破坏区域扩大,此时组合构件破坏程度加重、混凝土剥落量增加、支座连接处钢筋裸露,背爆面中心部分混凝土破坏沿对角线发展且层裂加深,此时板底层钢筋裸露面积增加,组合构件整体呈现弯剪组合破坏,板与交叉梁丧失共同工作能力,如图13(c)所示。

    在峰值为222.2 kPa的简化爆炸荷载作用下,加载至38 ms时,组合构件突然在支座连接处呈现混凝土冲切破坏,加载至450 ms时,组合构件板部分混凝土背爆面崩塌破碎区域与迎爆面压碎区域贯穿,钢筋弯曲变形,梁部分在迎爆面中心交叉部分旁的混凝土呈现冲切破坏,在背爆面近交叉梁中心3/5处均存在混凝土破坏剥落,残余混凝土厚度为30~40 mm,组合构件发生冲切破坏,丧失承载力,如图13(d)所示。

    图14为不同工况的背爆面中心点位移峰值对比图,图15为不同工况的背爆面中心点位移曲线。由图14图15可以看出,相同冲量作用下,随着加载峰值的提高,组合构件背爆面中心点位移峰值增加。在峰值为200.0、208.3和217.4 kPa的简化爆炸冲击波加载作用下,组合构件背爆面中心点位移发展至最大位移值之前曲线斜率一致,达到最大值之后均呈现振动回弹下降趋势;而峰值为222.2 kPa的简化爆炸冲击波加载作用下,组合构件突然毫无征兆地发生破坏并丧失承载力。随着长持时爆炸荷载峰值的提高,梁板组合结构从构件发生轻微弯曲破坏,过渡到支座处混凝土破坏、背爆面混凝土层裂剥落、钢筋弯曲裸露的弯剪联合破坏,最终发展成短时间内框支座处冲切破坏,背爆面板部分混凝土贯穿破坏、钢筋裸露并弯曲变形,此时交叉梁部分跨中附近混凝土破坏、钢筋弯曲变形,构件完全丧失承载力。

    图  14  不同工况下背爆面中心点的位移峰值
    Figure  14.  Displacement peaks of the central point of the backside under different load conditions
    图  15  不同工况下背爆面中心点的位移时程曲线
    Figure  15.  Displacement-time curves of the central point of the backside under different load conditions

    为了进行长持时爆炸荷载作用下梁板组合构件毁伤的等级划分,结合实验和数值模拟对背爆面中心点处的位移曲线进行了测量和统计,统计结果如表3所示。其中,构件2的数值模拟使用实验波形加载曲线,构件3~11的数值模拟使用三角形简化加载曲线。根据统计结果和结构的毁伤程度,以中心点处的位移挠跨比、组合构件的破坏表现作为划分标准,将不同工况下组合结构伤划分为轻度破坏、中度破坏、重度破坏和完全破坏。轻度破坏的表现形式是梁板组合结构的迎爆面支座处出现少量混凝土脱落,背爆面仅出现小裂纹,没有明显的混凝土破坏,挠跨比a≤0.5%;中度破坏的表现为梁板组合构件迎爆面中心弯曲凹陷,支座连接处混凝土破坏加深,背爆面混凝土开始剥落,随加载峰值的增加,剥落沿板中心处底层钢筋布置发展,构件主要为弯曲破坏,挠跨比0.5%<a≤1.0%;重度破坏的主要表现是组合构件支座处混凝土破坏,板背爆面混凝土沿对角线破坏剥落,钢筋变形并裸露,交叉梁背爆面混凝土中心四侧破坏,钢筋弯曲变形,组合构件总体呈现弯剪联合破坏,挠跨比1.0%<a≤1.5%;完全破坏的破坏特征为组合构件突然发生破坏,板部分混凝土整体破坏贯穿、钢筋完全裸露变形,交叉梁背爆面中心外侧均有混凝土崩塌剥落现象,组合构件完全丧失承载能力,挠跨比a>1.5%。

    表  3  相同冲量作用下梁板组合构件的破坏等级划分
    Table  3.  Failure grade classification of beam-slab composite structures under the same impulse
    构件方法加载峰值/kPa爆炸持续时间/ms背爆面中心点最大位移/mm挠跨比/%破坏等级
    1实验202.410005.900.30轻度破坏
    2模拟202.410005.850.29轻度破坏
    3100.010003.140.16轻度破坏
    4111.19003.690.18轻度破坏
    5125.08004.510.23轻度破坏
    6142.97005.800.29轻度破坏
    7166.76006.700.34轻度破坏
    8200.050013.620.68中度破坏
    9204.149014.750.74中度破坏
    10208.348016.090.80中度破坏
    11217.446021.181.05重度破坏
    12222.2450310.0115.50完全破坏
    下载: 导出CSV 
    | 显示表格

    设计并进行了长持时爆炸冲击波荷载作用下梁板组合结构的实验,结合有限元软件建立了数值模型,并将模拟结果与实验结果进行了比较,验证了模型的可行性。在此基础上,分析了长持时爆炸荷载加载强度对构件抗爆性能的影响,得出以下结论。

    (1)本文中建立的数值模型可以对结构破坏的动态演变过程进行可视化再现,数值模拟计算结果与实验结果的毁伤相似度较高、背爆面中心点的位移峰值接近,证实了该数值模型及算法的有效性。

    (2)相同冲量作用下,随着长持时爆炸荷载峰值的提高,梁板组合结构从整体轻微弯曲破坏,过渡到弯剪联合破坏,最终发展至短时间内构件冲切破坏;组合构件中,板部分破坏早于交叉梁部分,当板部分混凝土整体贯穿破坏时,组合构件丧失共同承载力。

    (3)本次实验的钢筋混凝土梁板组合结构的破坏等级划分和相应的破坏模式为:挠跨比a≤0.5%时,轻微破坏,构件能够正常使用;当0.5%<a≤1.0%时,中度破坏,稍微维修后可继续正常使用;当1.0%<a≤1.5%时,重度破坏,较大维修后可继续使用;当a>1.5%时,完全破坏,组合构件完全丧失承载能力。

    应注意的是,本文中建立的破坏等级划分是依据本次实验的少量实验数据建立的,建立的判据仅适用于本次实验的钢筋混凝土梁板组合构件,对其他形式组合构件的毁伤判据需要在以后进一步研究。文中的数据可为钢筋混凝土梁板组合结构的抗爆研究与设计提供实验结果,也为后续的钢筋混凝土建筑物整体毁伤评估奠定基础。

  • 图  1  锂离子电池隔膜及试样制备和表征

    Figure  1.  Lithium-ion battery separator as well as specimen preparation and characterization

    图  2  准静态实验装置

    Figure  2.  Quasi-static experimental device

    图  3  动态加载装置

    Figure  3.  Dynamic loading device

    图  4  25 ℃下0.001 s−1应变率的压缩力学性能测试结果

    Figure  4.  Compression test results for 0.001 s−1 strain rate at 25 °C

    图  5  不同应变率下力学性能比较与关键参数演化

    Figure  5.  Comparison of mechanical properties and evolution of key parameters under different strain rates

    图  6  100 ℃下应力-应变关系测试结果(以0.01 s−1为例)

    Figure  6.  Stress-strain relationship test results at 100 ℃ (example at 0.01 s−1)

    图  7  不同温度和应变率下的隔膜的压缩应力-应变测试结果

    Figure  7.  Stress-strain test results at different temperatures and strain rates

    图  8  不同温度和应变率下隔膜压缩力学性能关键参数的演变

    Figure  8.  Evolution of key parameters of compressive mechanical properties of separator at different temperatures and strain rates

    图  9  不同应变率和温度下压缩加载后的隔膜损伤形貌

    Figure  9.  Damage morphology of separator after compressive loading at different strain rates and temperatures

    图  10  不同温度下测试后隔膜表面的微观形貌

    Figure  10.  Microscopic morphologies of separator surface after testing at different temperatures

    图  11  应变率相关的模型拟合

    Figure  11.  Strain rate dependent model fitting

    图  12  应变率/温度相关的模型拟合

    Figure  12.  Strain rate/temperature-dependent model fitting

  • [1] ZHANG J N, ZHANG L, SUN F C, et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application [J]. IEEE Access, 2018, 6: 23848–23863. DOI: 10.1109/ACCESS.2018.2824838.
    [2] 李红刚, 张超, 曹俊超, 等. 锂离子电池碰撞安全仿真方法的研究进展与展望 [J]. 机械工程学报, 2022, 58(24): 121–144. DOI: 10.3901/JME.2022.24.121.

    LI H G, ZHANG C, CAO J C, et al. Advances and perspectives on modeling methods for collision safety of lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(24): 121–144. DOI: 10.3901/JME.2022.24.121.
    [3] 朱晓庆, 王震坡, WANG H, 等. 锂离子动力电池热失控与安全管理研究综述 [J]. 机械工程学报, 2020, 56(14): 91–118. DOI: 10.3901/JME.2020.14.091.

    ZHU X Q, WANG Z P, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles [J]. Journal of Mechanical Engineering, 2020, 56(14): 91–118. DOI: 10.3901/JME.2020.14.091.
    [4] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [5] LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse [J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f.
    [6] GAINES L, CUENCA R. Costs of lithium-ion batteries for vehicles [R]. USA: Argonne National Laboratory, 2000: 73. DOI: 10.2172/761281.
    [7] LOVE C T. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators [J]. Journal of Power Sources, 2011, 196(5): 2905–2912. DOI: 10.1016/j.jpowsour.2010.10.083.
    [8] ZHANG C, XU J, CAO L, et al. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries [J]. Journal of Power Sources, 2017, 357: 126–137. DOI: 10.1016/j.jpowsour.2017.04.103.
    [9] WANG L B, YIN S, ZHANG C, et al. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries [J]. Journal of Power Sources, 2018, 392: 265–273. DOI: 10.1016/j.jpowsour.2018.05.007.
    [10] JI Y P, CHEN X P, WANG T, et al. Coupled effects of charge-discharge cycles and rates on the mechanical behavior of electrodes in lithium-ion batteries [J]. Journal of Energy Storage, 2020, 30: 101577. DOI: 10.1016/j.est.2020.101577.
    [11] ZHU J E, LI W, XIA Y, et al. Testing and modeling the mechanical properties of the granular materials of graphite anode [J]. Journal of the Electrochemical Society, 2018, 165(5): A1160–A1168. DOI: 10.1149/2.0141807jes.
    [12] FADILLAH H, SANTOSA S P, GUNAWAN L, et al. Dynamic high strain rate characterization of lithium-ion nickel-cobalt-aluminum (NCA) battery using split Hopkinson tensile/pressure bar methodology [J]. Energies, 2020, 13(19): 5061. DOI: 10.3390/en13195061.
    [13] WANG L B, YIN S, YU Z X, et al. Unlocking the significant role of shell material for lithium-ion battery safety [J]. Materials and Design, 2018, 160: 601–610. DOI: 10.1016/j.matdes.2018.10.002.
    [14] KALNAUS S, KUMAR A, WANG Y L, et al. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading [J]. Journal of Power Sources, 2018, 378: 139–145. DOI: 10.1016/j.jpowsour.2017.12.029.
    [15] XU J, WANG L B, GUAN J, et al. Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries [J]. Materials and Design, 2016, 95: 319–328. DOI: 10.1016/j.matdes.2016.01.082.
    [16] SHEIDAEI A, XIAO X R, HUANG X S, et al. Mechanical behavior of a battery separator in electrolyte solutions [J]. Journal of Power Sources, 2011, 196(20): 8728–8734. DOI: 10.1016/j.jpowsour.2011.06.026.
    [17] KALNAUS S, WANG H, WATKINS T R, et al. Features of mechanical behavior of EV battery modules under high deformation rate [J]. Extreme Mechanics Letters, 2019, 32: 100550. DOI: 10.1016/j.eml.2019.100550.
    [18] ZHU J E, LUO H L, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading [J]. International Journal of Impact Engineering, 2019, 131: 78–84. DOI: 10.1016/j.ijimpeng.2019.05.003.
    [19] ZHU J E, ZHANG X W, LUO H L, et al. Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests [J]. Applied Energy, 2018, 224: 251–266. DOI: 10.1016/j.apenergy.2018.05.007.
    [20] CANNARELLA J, ARNOLD C B. Ion transport restriction in mechanically strained separator membranes [J]. Journal of Power Sources, 2013, 226: 149–155. DOI: 10.1016/j.jpowsour.2012.10.093.
    [21] KALNAUS S, WANG Y L, LI J L, et al. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries [J]. Extreme Mechanics Letters, 2018, 20: 73–80. DOI: 10.1016/j.eml.2018.01.006.
    [22] AVDEEV I, MARTINSEN M, FRANCIS A. Rate-and temperature-dependent material behavior of a multilayer polymer battery separator [J]. Journal of Materials Engineering and Performance, 2014, 23(1): 315–325. DOI: 10.1007/s11665-013-0743-4.
    [23] LI H G, GU J H, ZHOU D, et al. Rate-dependent damage and failure behavior of lithium-ion battery electrodes [J]. Engineering Fracture Mechanics, 2024, 303: 110143. DOI: 10.1016/j.engfracmech.2024.110143.
    [24] LI H G, GU J H, PAN Y J, et al. On the strain rate-dependent mechanical behavior of PE separator for lithium-ion batteries [J]. International Journal of Impact Engineering, 2024, 194: 105079. DOI: 10.1016/j.ijimpeng.2024.105079.
    [25] MIAO Y G, DU B, MA C B, et al. Some fundamental problems concerning the measurement accuracy of the Hopkinson tension bar technique [J]. Measurement Science and Technology, 2019, 30(5): 055009. DOI: 10.1088/1361-6501/ab01b5.
    [26] SIVIOUR C R, JORDAN J L. High strain rate mechanics of polymers: a review [J]. Journal of Dynamic Behavior of Materials, 2016, 2(1): 15–32. DOI: 10.1007/s40870-016-0052-8.
    [27] CANNARELLA J, LIU X Y, LENG C Z, et al. Mechanical properties of a battery separator under compression and tension [J]. Journal of the Electrochemical Society, 2014, 161(11): F3117–F3122. DOI: 10.1149/2.0191411jes.
    [28] DING L, LI D D, DU F H, et al. Mechanical behaviors and ion transport variation of lithium-ion battery separators under various compression conditions [J]. Journal of Power Sources, 2022, 543: 231838. DOI: 10.1016/j.jpowsour.2022.231838.
    [29] RICHETON J, AHZI S, VECCHIO K S, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress [J]. International journal of solids and structures, 2006, 43(7/8): 2318–2335. DOI: 10.1016/j.ijsolstr.2005.06.040.
    [30] ARRUDA E M, BOYCE M C, JAYACHANDRAN R. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers [J]. Mechanics of Materials, 1995, 19(2/3): 193–212. DOI: 10.1016/0167-6636(94)00034-e.
    [31] ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [32] LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027.
    [33] WANG L L, LABIBES K, AZARI Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars [J]. International Journal of Impact Engineering, 1994, 15(5): 669–686. DOI: 10.1016/0734-743x(94)90166-i.
    [34] YANG L M, WANG L L, ZHU Z X. A micromechanical analysis of the nonlinear elastic and viscoelastic constitutive relation of a polymer filled with rigid particles [J]. Acta Mechanica Sinica, 1994, 10(2): 176–185. DOI: 10.1007/bf02486588.
    [35] 王哲君, 强洪夫, 王广, 等. 中应变率下HTPB推进剂压缩力学性能和本构模型研究 [J]. 推进技术, 2016, 37(4): 776–782. DOI: 10.13675/j.cnki.tjjs.2016.04.023.

    WANG Z J, QIANG H F, WANG G, et al. Mechanical properties and constitutive model for HTPB propellant under intermediate strain rate compression [J]. Journal of Propulsion Technology, 2016, 37(4): 776–782. DOI: 10.13675/j.cnki.tjjs.2016.04.023.
  • 期刊类型引用(6)

    1. 吴栩霆,王振,周航,张国凯,李硕标. 不同冷却方式下高温混凝土的动态力学特性. 爆炸与冲击. 2025(01): 3-17 . 本站查看
    2. 赵春风,张利,李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能. 高压物理学报. 2024(01): 88-104 . 百度学术
    3. 杜晓庆,费智达,柳扬清,邱涛. 长持时爆炸冲击波作用下钢梁动力响应分析. 科学技术与工程. 2024(04): 1654-1661 . 百度学术
    4. 杨冠侠,武海军,田泽,董恒,黄风雷. 金属/聚氨酯波形发生器复合弹体冲击载荷特性及调控机制. 兵工学报. 2024(05): 1648-1662 . 百度学术
    5. 杨应恩,韩春秀,刘有菊. 钢筋混凝土连续板徐变收缩效应的解析方法. 西安建筑科技大学学报(自然科学版). 2024(04): 502-511 . 百度学术
    6. 张仲昊,汪维,张国凯,王振,吴汩. 不同高温作用后混凝土劣化损伤性能. 兵工学报. 2023(S1): 152-159 . 百度学术

    其他类型引用(1)

  • 加载中
图(12)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  103
  • PDF下载量:  74
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-09-07
  • 修回日期:  2024-11-06
  • 网络出版日期:  2024-11-07
  • 刊出日期:  2025-02-01

目录

/

返回文章
返回