Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

蜂窝管表层约束混凝土抗高速侵彻性能研究

李孝臣 纪玉国 李超 李杰 蒋海明 王明洋 李干

李孝臣, 纪玉国, 李超, 李杰, 蒋海明, 王明洋, 李干. 蜂窝管表层约束混凝土抗高速侵彻性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0024
引用本文: 李孝臣, 纪玉国, 李超, 李杰, 蒋海明, 王明洋, 李干. 蜂窝管表层约束混凝土抗高速侵彻性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0024
LI Xiaochen, JI Yuguo, LI Chao, LI Jie, JIANG Haiming, WANG Mingyang, LI Gan. Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0024
Citation: LI Xiaochen, JI Yuguo, LI Chao, LI Jie, JIANG Haiming, WANG Mingyang, LI Gan. Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0024

蜂窝管表层约束混凝土抗高速侵彻性能研究

doi: 10.11883/bzycj-2025-0024
基金项目: 国家自然科学基金(11972045);
详细信息
    作者简介:

    李孝臣(1997- ),男,博士生,austlxc@163.com

    通讯作者:

    李 干(1985- ),男,博士,副教授,ligan-impact@qq.com

  • 中图分类号: O347.3

Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete

  • 摘要: 为研究超高速侵彻下金属蜂窝管约束混凝土结构的抗侵彻性能,利用二级轻气炮开展了1 500 m/s附近弹体侵彻试验,使用物质点法模拟侵彻过程并对靶体和弹体参数的合理性进行验证,并利用该方法研究了蜂窝管壁厚、高度、直径和材料等参数对靶体抗侵彻性能的影响规律。数值计算表明:物质点法可以准确模拟高速侵彻过程,模拟结果与实验误差小于10%;通过正交分析得到的影响侵深的因素依次为:蜂窝管特征管深、特征内径、特征壁厚、材料;影响开坑半径的因素依次为蜂窝管特征壁厚、特征管深、材料、特征内径。对于本文所采用的弹体,根据优化结果分析得到了综合因素最优的组合。
  • 随着现代战争形态的演变,超高速武器技术的发展对军事防御工程提出了更高的要求[1]。这些武器以其极高的速度和动能,对传统防御结构构成了前所未有的挑战。钢管约束混凝土作为一种具有良好力学性能和经济性的结构材料,在建筑结构的应用日益广泛[2]。钢管约束混凝土通过在混凝土中嵌入钢管,利用钢管的高强度和高韧性来增强内部混凝土的径向约束,这种材料组合不仅提高了结构的抗压和抗拉强度,同时增强了其稳定性和耐久性[3]。在抗侵彻方面,石少卿等[4-5]首先提出多边形钢管混凝土在防护工程中可以减少侵彻深度,并通过数值模拟验证了250m/s速度条件下钢管混凝土抗侵彻能力高于普通混凝土。蒙朝美等[6]通过使用12.7 mm的穿甲弹侵彻不同形状的钢管约束混凝土(正六边形、正方形、圆形)来研究不同形状钢管约束混凝土抗侵彻能力,结果表明:正六边形钢管约束混凝土靶的抗侵彻性能最好,与圆形靶相比,其侵彻深度减小约11%,且偏心率小于0.35时,撞击点位置对侵彻深度的影响不大。钢管约束混凝土靶抗多发打击性能研究表明[7-8]:钢管约束混凝土抗多发打击能力明显高于半无限混凝土靶体,漏斗坑体积和最大深度较半无限靶体均有不同程度的降低。此外,使用钢纤维高强混凝土替换普通混凝土也是减小侵深的一种有效途径,赵宏远等[9]研究表明:利用正六边形钢管约束钢纤维高强混凝土,比普通钢纤维高强混凝土抗侵彻能力有所提升,当蜂窝钢管外接圆直径与弹体直径之比在0.8~6.0之间时,钢管壁厚是影响侵深的重要因素,随着约束钢管壁厚的增加,弹体侵彻深度降低。李季等[10]通过LS-DYNA对不同钢纤维含量和不同钢管壁厚的正六边形钢管约束钢纤维高强混凝土遮弹层进行抗侵彻数值模拟,研究发现随着钢管壁厚的增加,遮弹层抗侵彻能力得到有效的提升,且在混凝土中适当的参杂钢纤维可以降低弹体的侵彻深度。

    超高速条件下的弹体具有强大的毁伤目标能力,钢管约束混凝土具有优秀的抗侵彻能力,研究其在超高速侵彻下的抗侵彻效应具有重要意义。目前,对于低速条件下钢管约束混凝土靶体抗侵彻性能的研究较多,但是对于超高速条件下研究几乎没有。且以往研究中,蜂窝钢管设计贯穿整个靶体,这运用到实际工事设计中往往会使用大量钢材,此外大部分研究仅仅考虑单因素对于侵彻深度的影响,例如钢管直径、壁厚等,未考虑多条件耦合作用下的靶体抗侵彻性能。基于此,本文中通过开展超高速侵彻试验,研究浅埋蜂窝管约束混凝土抗高速侵彻性能并校验数值仿真模型,在此基础上设计正交参数设计,数值模拟研究蜂窝管材料、内切圆直径、高度和壁厚等参数对其所增强混凝土靶体抗侵彻性能的影响,并对其参数进行优化,寻找多因素耦合条件下钢管混凝土抗侵彻效果最好的组合方式。

    试验在二级轻气炮上进行,试验方法见文献[11],弹体速度测速标准符合标准[12],试验原理如图1所示。首先,对一级泵管、发射管抽真空,随后在高压气室内充入高压氮气,往一级泵管中充入一定量的氢气。发射时,高压气室快开阀开启,高压氮气推动活塞压缩氢气,一级泵管尾部达到破膜压力后,试验弹体和弹托被高速发射,通过激光测速系统记录弹体发射速度,脱壳系统用于分离弹托和弹体,最后弹体撞击试验靶体。

    图  1  试验系统示意图
    Figure  1.  Schematic diagram of experimental system

    试验用弹体为卵形弹,材料为高强合金钢30CrMnSiNi2A,密度为7.85 g/cm3,弹性模量为210 GPa,屈服强度为1517 MPa,全长l = 36 mm,直径d = 7.2 mm,弹头形状系数为3.0,弹体初始质量9.40 g,如图2所示。

    图  2  试验弹体
    Figure  2.  Experimental projectile

    靶体分为素混凝土和蜂窝钢表层约束混凝土两类,所使用的混凝土按C50配置,养护28 d后,测得其平均抗压强度为52 MPa。素混凝土靶的混凝土尺寸为380×600 mm,外侧以10 mm钢板进行约束。蜂窝钢表层约束混凝土靶的尺寸与素混凝土靶相同,但在靶体表面内嵌了不同尺寸的蜂窝钢管对靶体表面进行约束。蜂窝钢管均为正六边形,壁厚T=2.5 mm,内切圆直径D=60 mm,深度分别为H=20 mm和H=50mm。引入3个无量纲参数描述蜂窝管的特征尺寸,蜂窝管特征内径U=D/d,特征管深V=H/h,特征壁厚W=T/d,本次试验蜂窝管特征内径U=8.33,W=0.07,埋深20mm和50mm特征管深分别为V20=0.56,V50=1.39。排布方式如图3所示。为了保证在浇筑混凝土和后期试验过程中蜂窝钢的稳定性,将蜂窝钢通过钢筋焊接在钢桶上。

    图  3  侵彻试验靶体
    Figure  3.  Penetration test target

    共开展了3发试验,目标靶体分别为C50素混凝土(简称H0)、深度20 mm钢管约束C50混凝土(简称H20)和深度50 mm钢管约束C50混凝土(简称H50)。激光测得侵彻H0、H20、H50试验弹体速度分别为1469.81533.51456.7 m/s。

    为了捕捉弹体着靶姿态,在靶仓侧面架设高速摄像机,摄像帧率υ=500000 s−1,弹体侵彻H20靶体的高速摄像结果如图4所示。可见弹体和弹托完全分离,分离后弹体姿态稳定,垂直侵入混凝土靶体;弹体在t = 68 μs时到达靶面,t=94 μs时完全钻入靶体,区间平均速度为1384.6 m/s。

    图  4  弹体撞击蜂窝靶体过程高速摄像
    Figure  4.  High speed camera during projectile impacting honeycomb target
    1.2.1   靶体表面毁伤与成坑

    3组侵彻试验完成后,使用SHINING 3D EinScan-Pro+三维扫描仪得到精度为0.1 mm的开坑三维图像,接着利用Geomagic Studio软件提取坑的边缘点坐标,使用最小二乘法将边缘坐标点拟合得到圆形等效成坑轮廓,采用圆的半径为开坑半径,用以进行后续分析。试验后的靶体表面形态、扫描图像和开坑拟合曲线如下图5所示。

    图  5  不同靶体上表面形态
    Figure  5.  Upper surface morphology of different targets

    图5可见:高速侵彻完成后3组试验靶体浅层弹开坑均呈漏斗状,深层内部为隧道区,H0靶体表面破坏最为严重,4条径向裂纹延伸至钢制套筒。其它两个靶体表面破坏较小,裂缝主要沿蜂窝钢外沿分布。

    不同工况的开坑半径和开坑深度如下表所示:

    表  1  不同工况条件下开坑半径和开坑深度
    Table  1.  Pit radius and depth under different working conditions
    工况开坑半径/mm开坑深度/mm
    H095.626.8
    H2052.617.7
    H5052.316.4
    下载: 导出CSV 
    | 显示表格

    从数据可以看出,H0在侵彻完成后表面开坑最大,平均开坑半径为95.6 mm;H20和H50靶体开坑半径均和蜂窝钢单胞尺寸相当,较H0靶体开坑半径降低55.0%;从成坑侧面看,随着蜂窝管特征深度的增加,侵彻成坑区的深度减小,H20、H50分别较H0降低34.0%、38.8%。说明蜂窝管约束混凝土可以有效的减小靶体表面裂纹的发展和开坑范围,这对防护工程建设和打击后减少抢修时间均具有积极意义。

    1.2.2   弹体形貌和侵彻深度

    对弹坑表面三维扫描结束后,沿弹道剖开靶体,测量靶体上表面至弹头部分即为侵彻深度。图6为3种试验条件下回收的试验弹体形貌,可以看出试验弹体在靶体内部状态垂直于靶体,表明弹体为正侵彻,弹头部分有不同程度的磨蚀,弹体其余部分相对完整。为了表征弹头部分损伤,定义弹尖和弹头尾部连线与弹体直径所成的夹角定义为磨损特征角,示意图如图7所示。由图7可知,弹头特征角度改变量∆α越大,表明弹头损伤越严重。

    图  6  回收的试验弹体形貌
    Figure  6.  Recovered test projectile morphology
    图  7  弹头特征角度示意图
    Figure  7.  Schematic diagram of warhead characteristic angle

    为了进一步定量分析3种靶体的抗侵彻性能,采用线性假设归一化得到弹速为1 500 m/s时3种靶体的侵彻深度P1500,试验及归一化处理结果如表2所示。可见,在同一侵彻速度条件下,H20、H50靶体较H0靶体侵彻深度分别减小1.2%、5.5%,蜂窝管特征管深越大,靶体抗侵彻性能越好。

    表  2  试验后弹体参数、侵彻深度对比
    Table  2.  Comparison of projectile parameters and penetration depth after test
    试验工况 v/(m/s) l/mm Δll×100% m/g Δmm×100% α Δαα0×100% P/mm P1500/mm
    H0 1469.8 33.2 7.8 8.7 7.4 68.5 6.4 285 291
    H20 1533.5 31.5 12.5 8.6 8.5 64.2 12.3 294 287.6
    H50 1456.7 30.4 15.6 8.4 10.6 60.6 17.2 267 275
     注:l:弹体长度;m:弹体质量;α,弹头特征角度;α0,弹头初始特征角度;P:实际侵彻深度;P15001500 m/s速度下侵彻深度。
    下载: 导出CSV 
    | 显示表格

    文献[13]表明侵彻成坑直径对弹体速度的变化不敏感,但是弹体侵彻深度与弹体速度有着直接关系,在刚性侵彻范围内(质量损失小于10%),弹体侵彻深度与侵彻速度呈线性关系[14]。H0、H20、H50这3种工况下的弹头随着蜂窝管特征管深V的增大依次加重,这是因为蜂窝管约束通过提升混凝土动态抗压强度[9],导致开坑阶段弹头应力集中加剧、钝化程度增大,进而显著提高开坑阶段和后续隧道阶段的侵彻阻力,随着V的增大,这种现象越发明显。

    试验完成后H20靶体的剖面图如图8所示,可以看到损伤区域主要集中于中心蜂窝钢区域,且呈对称分布,破碎区深度为46 mm,宽度为52 mm。从剖面来看,弹道垂直于靶体表面,靶体除弹道外无其它明显破坏现象,表层蜂窝钢有效抑制了侵彻裂纹的发展。

    图  8  H20靶体剖面图
    Figure  8.  Cross section of H20 target

    物质点法 [15-18] (material point method, MPM)是目前超高速碰撞和爆炸数值分析的最有前景的方法之一[19-21],采用MPM3D[22]对侵彻过程进行分析。计算模型按照试验参数建立,混凝土半径为190 mm,外侧钢制套筒厚度为5 mm,蜂窝钢管厚度为2.5 mm。为了节约计算资源,建立1/4模型,1/4界面处设立对称边界,钢制套筒设立自由边界。基于粒子尺寸敏感性分析结果,模拟弹体粒子大小为0.5 mm,其余粒子大小均为1 mm。侵彻素混凝土和蜂窝约束钢管混凝土模型见图9

    图  9  计算模型图
    Figure  9.  Calculation model

    弹体本构模型采用Johnson-Cook模型,状态方程采用Grüneisen状态方程;混凝土本构模型采用Holmquist Johnson-Cook模型;蜂窝钢管和钢制套筒采用ElaPlastic材料模型,详细参数见文献[23-25]。

    为了减小背景网格大小对侵彻数值模拟结果的影响,在数值模拟计算前需对背景网格收敛性分析,在保证数值模拟结果正确性同时提高计算效率。因此分别选用背景网格大小为3、2、1.8、1.5、1.2和1 mm,图10所示为不同背景网格侵彻素混凝土的弹体侵彻位移-时间曲线。

    图  10  不同背景网格尺寸弹体位移-时间曲线
    Figure  10.  Displacement time curves of projectiles with different background grid sizes

    图10可以看出,网格在1~3 mm内是收敛的。1.2 mm背景网格计算结果与1 mm误差仅为1.7%而花费的时间仅有前者的62.3%,与实验结果误差为5.65%,其既可以保证结果正确又可以提高计算效率,所以选用1.2 mm背景网格是合理的。

    为了检验数值模拟弹靶参数的准确性,分别模拟试验工况H0、H20、H50,侵彻过程位移时间曲线如下图11所示。

    图  11  不同工况弹体位移-时间曲线
    Figure  11.  Displacement and acceleration curves of projectile penetrating plain concrete at different times

    从弹体位移时间曲线可以看出,弹体经历了由减速到回弹模拟3种工况弹体最大侵深分别为:274.55、272.49和268.38 mm,与试验值误差分别为5.65%、5.25%、2.40%,误差均不大于6%。

    提取侵彻完成靶体开坑损伤图与试验对比如下图12所示:

    图  12  侵彻不同靶体损伤图与试验对比
    Figure  12.  Comparison of damage patterns and experiments of penetrating different targets

    图12可以看出,数值模拟结果靶体开坑范围与实验值较为接近,H0、H20、H50这3组靶体开坑半径模拟结果与试验结果误差依次为−8.51%、8.4%、6.3%,均小于10%。从侧面毁伤来看,H0靶体在接近顶部端破坏情况显著大于其余2种靶体,H20和H50靶体的损伤主要集中于蜂窝单胞内,并向侧下方延展,蜂窝深度越大其裂纹的扩散角度越小。3种侵彻工况下弹身部分的损伤均较小,H0和H20弹头部分出现轻微磨蚀损伤,H50工况损伤较大,弹体对比如下表3所示。可以看出MPM可以准确的模拟出弹体头部磨蚀变形情况,同时可以模拟出弹身在侵彻过程中因摩擦产生的纵向“沟壑”分布规律。

    表  3  侵彻结束弹体损伤对比
    Table  3.  Comparison of projectile damage at the end of penetration
    工况 数值模拟 试验回收
    H0
    H20
    H50
    下载: 导出CSV 
    | 显示表格

    综上所述,利用物质点法和上述材料的本构方程、状态方程参数,可以较为精确模拟不同工况侵彻时的侵深、靶体开坑大小和子弹形变过程。

    文献表明[9-10]:中低速侵彻正六边形钢管约束混凝土侵彻深度与蜂窝管特征内径、特征壁厚有关,但对于超高速侵彻尚无相关文献。为了探究高速侵彻条件下蜂窝管约束混凝土抗侵彻性能,采用L9(34)正交表[26]设计不同侵彻工况(不同蜂窝管的高度、壁厚、内切圆直径、材料),利用物质点法和前文的材料参数进行数值仿真。仿真侵彻速度为1 500 m/s,粒子和背景网格大小同上,钨和铝的本构模型采用理想弹塑性模型,参数见文献[27],正交模拟设计表如下表4所示。

    表  4  正交模拟设计表
    Table  4.  Orthogonal simulation design
    方案 T/mm H/mm D/mm 材料
    1 1 50 30
    2 1 100 90
    3 1 150 60
    4 2.5 50 90
    5 2.5 100 60
    6 2.5 150 30
    7 4 50 60
    8 4 100 30
    9 4 150 90
    下载: 导出CSV 
    | 显示表格

    9种工况下侵彻完成侧面损伤云图对比如下图13所示(钢:G,铝:L,钨:W),可以看出在侵彻过程中,金属蜂窝管约束长度范围内,混凝土损伤主要集中于金属蜂窝管内部,一旦弹体侵彻深度超过金属蜂窝管长度,弹体周围混凝土破碎范围将会加宽,尤其是在蜂窝管与混凝土交界面上均会出现较大损伤,这是由于金属管约束释放之后引起的阻抗失配引起的,与实验观测的结果一致。

    图  13  侵彻完成侧面损伤云图对比图
    Figure  13.  Comparison of side damage nephogram after penetration

    不同工况侵彻过程速度和位移-时间变化曲线如下图14所示:

    图  14  不同侵彻工况弹体速度-时间、位移-时间变化曲线
    Figure  14.  Velocity time and displacement time curves of projectile under different penetration conditions

    由上图14可以看出,在有蜂窝管约束条件下,侵深均小于素混凝土。9种工况中,侵深最浅的一组为T4-H100-D30-W,侵深为227.01 mm;侵深最深的为T2.5-H50-D90-W,侵深为271.20 mm,基本与素混凝土侵深相同。极差分析采用文献[26]方法,侵深极差分析结果如表5所示:

    表  5  不同组合侵深结果极差分析
    Table  5.  Range analysis of penetration results at different times
    模拟工况 T/mm H/mm D/mm 材料 侵深P/mm
    T1-H50-D30-G 1 50 30 268.34
    T1-H100-D90-L 1 100 90 261.17
    T1-H150-D60-W 1 150 60 259.29
    T2.5-H50-D90-W 2.5 50 90 271.20
    T2.5-H100-D60-G 2.5 100 60 260.13
    T2.5-H150-D30-L 2.5 150 30 231.33
    T4-H50-D60-L 4 50 60 268.41
    T4-H100-D30-W 4 100 30 227.01
    T4-H150-D90-G 4 150 90 255.66
    侵深极差 12.57 20.56 20.45 8.88
    下载: 导出CSV 
    | 显示表格

    可见侵深影响因素的显著程度排序由高到低为:蜂窝管特征管深、特征内径、特征壁厚、材料,蜂窝管表层约束混凝土抗侵深能力对蜂窝管的特征管深和特征内径较为敏感,二者极差值都在20.5附近。综合极差分析结果,选取最小数值作为抗侵深能力最优水平,最优组合为:厚度4 mm、高度150 mm、内切圆直径30 mm的钨合金。

    侵彻结束利用ParaView软件提取混凝土靶体失效范围,对比图15如下:

    图  15  侵彻钢管约束混凝土开坑对比
    Figure  15.  Comparison of penetration into confined concrete filled steel tube

    将不同组合开坑形状等效为圆,拟合开坑半径正交分析如下表6所示:

    表  6  开坑平均半径正交分析
    Table  6.  Orthogonal analysis of average radius of excavation
    模拟工况 T/mm H/mm D/mm 材料 成坑半径R/mm
    T1-H50-D30-G 1 50 30 118.4
    T1-H100-D90-L 1 100 90 101.1
    T1-H150-D60-W 1 150 60 103.7
    T2.5-H50-D90-W 2.5 50 90 107.8
    T2.5-H100-D60-G 2.5 100 60 86.4
    T2.5-H150-D30-L 2.5 150 30 84.3
    T4-H50-D60-L 4 50 60 91.0
    T4-H100-D30-W 4 100 30 78.3
    T4-H150-D90-G 4 150 90 65.3
    成坑半径极差 29.5 21.3 2.3 6.6
    下载: 导出CSV 
    | 显示表格

    所以开坑影响因素的显著程度排序由高到低为:蜂窝管特征壁厚、特征管深、材料、特征内径。可以看出开坑大小对蜂窝管特征内径和材料不敏感,特别是蜂窝管特征内径影响可以忽略。综合极差分析结果,选取最小数值作为抗侵彻开坑能力最优水平,得到各因素最优组合为:厚度4 mm、高度150 mm、内切圆直径90 mm的铝。

    3.4.1   抗侵彻深度最优组合

    选取最优组合为:内切圆直径30 mm、高度150 mm、厚度4 mm的钨合金进行数值模拟,优化组合与正交试验组模拟相比最大侵深结果对比如下图16所示:

    图  16  优化组合与不同工况侵深结果对比
    Figure  16.  comparison of penetration results between optimized combination and different working conditions

    优化后的组合抗超高速侵深为204.79 mm,较素混凝土组侵深降低25.1%,可见优化后蜂窝混凝土结构抗侵彻能力大幅度提高。

    3.4.2   抗侵彻开坑半径最优组合

    选取最优组合为:厚度4 mm、高度150 mm、内切圆直径90 mm的铝进行数值模拟,将选取的最优组合与正交分析工况对比,如下图17所示:

    图  17  优化组合与不同工况开坑半径对比
    Figure  17.  Comparison between optimized combination and pit opening radius under different working conditions

    优化组合侵彻开坑平均半径为61.8 mm,较模拟的素混凝土开坑半径降低28.7%,说明该组合对降低侵彻时的开坑大小具有较好的作用。

    3.4.3   抗侵彻效应综合最优组合

    蜂窝管表层约束混凝土在实际工程应用时,往往会结合多指标综合考虑,下面从侵彻深度(P)、开坑半径(R)、用料成本(J)三方面综合评价最优指标。

    首先,为每个指标重新赋值,以确保每个结果量纲统一。

    ji=JiJminJmaxJmin (1)
    pi=PiPminPmaxPmin (2)
    ri=RiRminRmaxRmin (3)

    式中:jipiri表示新值,JiPiRi表示该指标原始值,JmaxPmaxRmax表示该指标最大值,JminPminRmin表示该指标最小值。

    综合得分结果F计算方法为:

    Fi=η1ji+η2pi+η3ri (4)

    式中:η表示权重因子,η1+η2+η3=1,计算时取每个指标权重值相等(η1=η2=η3=13)。

    以蜂窝管铺设边长为1 m的正方形区域为例,钢、铝、钨密度系数分别为7.85,2.75,18.00,价格系数分别为3.5,16,140,利用每种工况体积即可得到蜂窝管成本。9种工况新值和综合得分结果如下表7所示。

    表  7  综合因素正交分析
    Table  7.  Orthogonal analysis of comprehensive factors
    工况 T/mm H/mm D/mm 材料 j p r F
    T1-H50-D30-G 1 50 30 0 0.94 1.00 0.65
    T1-H100-D90-L 1 100 90 9.62e−6 0.77 0.67 0.48
    T1-H150-D60-W 1 150 60 0.20 0.73 0.72 0.55
    T2.5-H50-D90-W 2.5 50 90 0.11 1.00 0.80 0.64
    T2.5-H100-D60-G 2.5 100 60 2.18e−3 0.75 0.40 0.38
    T2.5-H150-D30-L 2.5 150 30 0.02 0.10 0.36 0.16
    T4-H50-D60-L 4 50 60 3.03 e−3 0.94 0.48 0.47
    T4-H100-D30-W 4 100 30 1.00 0.00 0.24 0.41
    T4-H150-D90-G 4 150 90 4.35e−3 0.65 0.00 0.22
    综合得分极差 0.19 0.28 0.06 0.16
    下载: 导出CSV 
    | 显示表格

    综合影响因素的显著程度排序为:蜂窝管特征管深、特征壁厚、材料、特征内径。综合极差分析结果,选取最小数值作为综合最优水平,得到综合因素最优组合为:厚度4 mm、高度150 mm、内切圆直径30 mm的铝。

    本文中分别开展了弹体速度约在1500 m/s的侵彻混凝土和蜂窝管表层约束混凝土试验,利用物质点法模拟还原了侵彻过程,并探讨了蜂窝管特征壁厚、特征内径、特征管深、材料对抗侵彻性能的影响,利用极差分析分别得到了抗侵彻深度和抗侵彻成坑半径的最优组合,并对最优组合进行了模拟验证。得到了以下结论:

    (1) 蜂窝钢管约束混凝土结构可以有效减小弹体侵彻终点效应,随着特征管深V的增大,归一化速度下弹体侵深和成坑半径减小,弹体磨蚀作用加剧。

    (2) MPM在模拟冲击侵彻方面展现出巨大的优势,该方法可以精确的模拟弹靶相互作用过程,模拟的侵彻深度结果和开坑范围与试验误差均小于10%。正交分析金属蜂窝管约束混凝土对弹体侵彻深度影响因素大小依次为蜂窝管的特征管深、特征内径、特征壁厚、材料;影响开坑半径大小因素依次为蜂窝管的特征壁厚、特征管深、材料、特征内径。

    (3) 从数值模拟结果可以看出随着蜂窝管特征壁厚的增加,靶体的抗侵彻性能显著提升,但是当特征壁厚达到一定值后,其对抗侵彻性能的提升效果趋于饱和;较大的蜂窝管特征管深可以有效延长弹体在约束区域内的侵彻路径,从而增大能量耗散,降低侵彻深度;特征内径的变化主要影响弹体在初始接触阶段的受力分布,较小的特征内径可有效减小侵彻深度。

    (4) 通过正交分析得到的厚度4 mm、高度150 mm、内切圆直径30 mm的钨合金组合具有最好的抗侵深能力,侵彻深度较素混凝土减少25.1%;厚度4 mm、高度150 mm、内切圆直径90 mm的铝具有最好的抗侵彻开坑能力,开坑半径较素混凝土减少28.7%;通过提出的权重因子加权得到的综合因素最优组合为:厚度4 mm、高度150 mm、内切圆直径30 mm的铝。

  • 图  1  试验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  试验弹体

    Figure  2.  Experimental projectile

    图  3  侵彻试验靶体

    Figure  3.  Penetration test target

    图  4  弹体撞击蜂窝靶体过程高速摄像

    Figure  4.  High speed camera during projectile impacting honeycomb target

    图  5  不同靶体上表面形态

    Figure  5.  Upper surface morphology of different targets

    图  6  回收的试验弹体形貌

    Figure  6.  Recovered test projectile morphology

    图  7  弹头特征角度示意图

    Figure  7.  Schematic diagram of warhead characteristic angle

    图  8  H20靶体剖面图

    Figure  8.  Cross section of H20 target

    图  9  计算模型图

    Figure  9.  Calculation model

    图  10  不同背景网格尺寸弹体位移-时间曲线

    Figure  10.  Displacement time curves of projectiles with different background grid sizes

    图  11  不同工况弹体位移-时间曲线

    Figure  11.  Displacement and acceleration curves of projectile penetrating plain concrete at different times

    图  12  侵彻不同靶体损伤图与试验对比

    Figure  12.  Comparison of damage patterns and experiments of penetrating different targets

    图  13  侵彻完成侧面损伤云图对比图

    Figure  13.  Comparison of side damage nephogram after penetration

    图  14  不同侵彻工况弹体速度-时间、位移-时间变化曲线

    Figure  14.  Velocity time and displacement time curves of projectile under different penetration conditions

    图  15  侵彻钢管约束混凝土开坑对比

    Figure  15.  Comparison of penetration into confined concrete filled steel tube

    图  16  优化组合与不同工况侵深结果对比

    Figure  16.  comparison of penetration results between optimized combination and different working conditions

    图  17  优化组合与不同工况开坑半径对比

    Figure  17.  Comparison between optimized combination and pit opening radius under different working conditions

    表  1  不同工况条件下开坑半径和开坑深度

    Table  1.   Pit radius and depth under different working conditions

    工况开坑半径/mm开坑深度/mm
    H095.626.8
    H2052.617.7
    H5052.316.4
    下载: 导出CSV

    表  2  试验后弹体参数、侵彻深度对比

    Table  2.   Comparison of projectile parameters and penetration depth after test

    试验工况 v/(m/s) l/mm Δll×100% m/g Δmm×100% α Δαα0×100% P/mm P1500/mm
    H0 1469.8 33.2 7.8 8.7 7.4 68.5 6.4 285 291
    H20 1533.5 31.5 12.5 8.6 8.5 64.2 12.3 294 287.6
    H50 1456.7 30.4 15.6 8.4 10.6 60.6 17.2 267 275
     注:l:弹体长度;m:弹体质量;α,弹头特征角度;α0,弹头初始特征角度;P:实际侵彻深度;P15001500 m/s速度下侵彻深度。
    下载: 导出CSV

    表  3  侵彻结束弹体损伤对比

    Table  3.   Comparison of projectile damage at the end of penetration

    工况 数值模拟 试验回收
    H0
    H20
    H50
    下载: 导出CSV

    表  4  正交模拟设计表

    Table  4.   Orthogonal simulation design

    方案 T/mm H/mm D/mm 材料
    1 1 50 30
    2 1 100 90
    3 1 150 60
    4 2.5 50 90
    5 2.5 100 60
    6 2.5 150 30
    7 4 50 60
    8 4 100 30
    9 4 150 90
    下载: 导出CSV

    表  5  不同组合侵深结果极差分析

    Table  5.   Range analysis of penetration results at different times

    模拟工况 T/mm H/mm D/mm 材料 侵深P/mm
    T1-H50-D30-G 1 50 30 268.34
    T1-H100-D90-L 1 100 90 261.17
    T1-H150-D60-W 1 150 60 259.29
    T2.5-H50-D90-W 2.5 50 90 271.20
    T2.5-H100-D60-G 2.5 100 60 260.13
    T2.5-H150-D30-L 2.5 150 30 231.33
    T4-H50-D60-L 4 50 60 268.41
    T4-H100-D30-W 4 100 30 227.01
    T4-H150-D90-G 4 150 90 255.66
    侵深极差 12.57 20.56 20.45 8.88
    下载: 导出CSV

    表  6  开坑平均半径正交分析

    Table  6.   Orthogonal analysis of average radius of excavation

    模拟工况 T/mm H/mm D/mm 材料 成坑半径R/mm
    T1-H50-D30-G 1 50 30 118.4
    T1-H100-D90-L 1 100 90 101.1
    T1-H150-D60-W 1 150 60 103.7
    T2.5-H50-D90-W 2.5 50 90 107.8
    T2.5-H100-D60-G 2.5 100 60 86.4
    T2.5-H150-D30-L 2.5 150 30 84.3
    T4-H50-D60-L 4 50 60 91.0
    T4-H100-D30-W 4 100 30 78.3
    T4-H150-D90-G 4 150 90 65.3
    成坑半径极差 29.5 21.3 2.3 6.6
    下载: 导出CSV

    表  7  综合因素正交分析

    Table  7.   Orthogonal analysis of comprehensive factors

    工况 T/mm H/mm D/mm 材料 j p r F
    T1-H50-D30-G 1 50 30 0 0.94 1.00 0.65
    T1-H100-D90-L 1 100 90 9.62e−6 0.77 0.67 0.48
    T1-H150-D60-W 1 150 60 0.20 0.73 0.72 0.55
    T2.5-H50-D90-W 2.5 50 90 0.11 1.00 0.80 0.64
    T2.5-H100-D60-G 2.5 100 60 2.18e−3 0.75 0.40 0.38
    T2.5-H150-D30-L 2.5 150 30 0.02 0.10 0.36 0.16
    T4-H50-D60-L 4 50 60 3.03 e−3 0.94 0.48 0.47
    T4-H100-D30-W 4 100 30 1.00 0.00 0.24 0.41
    T4-H150-D90-G 4 150 90 4.35e−3 0.65 0.00 0.22
    综合得分极差 0.19 0.28 0.06 0.16
    下载: 导出CSV
  • [1] 王明洋, 岳松林, 李海波, 等. 超高速弹撞击岩石的地冲击效应等效计算 [J]. 岩石力学与工程学报, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.

    WANG M Y, YUE S L, LI H B, et al. Equivalent calculation of ground impact effect of hypervelocity projectil-e on rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.
    [2] 韩林海. 钢管混凝土结构[M]. 北京: 科学出版社, 2000.
    [3] 刘培生. 多孔固体结构与性能[M]. 北京: 清华大学出版社, 2003.
    [4] 石少卿, 黄翔宇, 刘颖芳, 等. 多边形钢管混凝土短构件在防护工程中的应用 [J]. 混凝土, 2005(2): 95–98. DOI: 10.3969/j.issn.1002-3550.2005.02.027.

    SHI S Q, HUANG X Y, LIU Y F, et al. Application of polygonal concrete-filled steel tube short members in p-rotective engineering [J]. Concrete, 2005(2): 95–98. DOI: 10.3969/j.issn.1002-3550.2005.02.027.
    [5] 程华, 黄宗明, 石少卿, 等. 应用仿生原理设计遮弹层及其抗侵彻数值模拟分析 [J]. 应用力学学报, 2005(4): 593–597+679. DOI: 10.3969/j.issn.1000-4939.2005.04.019.

    CHENG H, HUANG Z M, SHI S Q, et al. Numerical simulation analysis of design of bullet shield layer and its anti-penetration using biomimetic principle [J]. Chinese Journal of Applied Mechanics, 2005(4): 593–597+679. DOI: 10.3969/j.issn.1000-4939.2005.04.019.
    [6] 蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19. DOI: 10.13465/j.cnki.jvs.2018.13.003.

    MENG C M, SONG D Y, JIANG Z G, et al. Experimental study on the anti-penetration performance of polygo-nal steel tube confined concrete target [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19. DOI: 10.13465/j.cnki.jvs.2018.13.003.
    [7] 宋殿义, 谭清华, 蒙朝美, 等. 格栅钢管约束混凝土靶抗多发打击性能试验研究 [J]. 防护工程, 2020, 42(3): 11–18. DOI: 10.3969/j.issn.1674-1854.2020.03.002.

    SONG D Y, TAN Q H, MENG C M, et al. Experimental study on the resistance to multiple impacts of grating steel tube confined concrete target [J]. Protective Engineering, 2020, 42(3): 11–18. DOI: 10.3969/j.issn.1674-1854.2020.03.002.
    [8] 宋殿义, 谭清华, 申志强, 等. 蜂窝钢管约束混凝土靶抗多发打击试验研究 [J]. 振动与冲击, 2021, 40(10): 133–139+158. DOI: 10.13465/j.cnki.jvs.2021.10.017.

    SONG D Y, TAN Q H, SHEN Z Q, et al. Experimental investigation on cellular steel-tube-confined concrete tar-gets under multi-hit of projectiles [J]. Journal of Vibration and Shock, 2021, 40(10): 133–139+158. DOI: 10.13465/j.cnki.jvs.2021.10.017.
    [9] 赵宏远, 武海军, 董恒, 等. 蜂窝钢管混凝土抗侵彻性能实验研究 [J]. 爆炸与冲击, 2023, 43(5): 46–56. DOI: 10.11883/bzycj-2022-0050.

    ZHAO H Y, WU H J, DONG H, et al. Experimental study on the anti-penetration performance of honeycomb st-eel tube concrete [J]. Explosion and Shock Waves, 2023, 43(5): 46–56. DOI: 10.11883/bzycj-2022-0050.
    [10] 李季, 储召军, 孙建虎, 等. 钢管钢纤维高强混凝土遮弹层抗侵彻数值模拟 [J]. 后勤工程学院学报, 2016, 32(2): 27–31. DOI: 10.3969/j.issn.1672-7843.2016.02.005.

    LI J, CHU Z J, SUN J H, et al. Numerical simulation of the anti-penetration performance of steel tube steel fib-er high-strength concrete armor layer [J]. Journal of Logistics Engineering College, 2016, 32(2): 27–31. DOI: 10.3969/j.issn.1672-7843.2016.02.005.
    [11] 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.

    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental study on the penetration depth reduction phen-omenon of ultra-high-speed projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
    [12] NATO STANAG 4114, Measurement of projectile velocities[S]. Brussels: NATO, 1977.
    [13] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [14] 邓云飞, 崔亚男, 慕忠成, 等. 卵形头弹体对素混凝土高速侵彻的实验研究 [J]. 应用力学学报, 2019, 36(5): 1144–1151+1262. DOI: 10.11776/cjam.36.05.D050.

    DENG Y F, CUI Y N, Mu Z C, et al. Experimental study on high-speed penetration of ogive-nose projectiles into plain concrete [J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1144–1151+1262. DOI: 10.11776/cjam.36.05.D050.
    [15] Ma S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hy-pervelocity impact problems. International Journal of Impact Engineering, 2009, 36: 272–282. DOI: 10.1016/j.ijimpeng.2008.07.001.
    [16] 倪锐晨, 孙梓贤, 李家盛, 等. 结构爆炸毁伤的浸没多介质有限体积物质点法 [J]. 力学学报, 2022, 54(12): 3269–3282. DOI: 10.6052/0459-1879-22-446.

    NI R C, SUN Z X, LI J S, et al. An immersed multi-material finite volume-material point method for structural blast damage [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3269–3282. DOI: 10.6052/0459-1879-22-446.
    [17] 谢桂兰, 左立来, 宋慕清, 等. 基于物质点法弹丸侵彻靶板的仿真与结构优化 [J]. 弹道学报, 2023, 35(2): 46–52. DOI: 10.12115/j.issn.1004-499X(2023)02-006.

    XIE G L, ZUO L L, SONG M Q, et al. Simulation and structural optimization of projectile penetration of targe-t plates based on the material point method [J]. Journal of Ballistics, 2023, 35(2): 46–52. DOI: 10.12115/j.issn.1004-499X(2023)02-006.
    [18] 谢桂兰, 侯昆, 龚曙光, 等. 基于物质点法Ti/Al3Ti层状复合材料抗斜侵彻性能研究 [J]. 兵器装备工程学报, 2023, 44(4): 194–199. DOI: 10.11809/bqzbgcxb2023.04.027.

    XIE G L, HOU K, GONG S G, et al. Research on oblique penetration resistance of Ti/Al3Ti laminate composit-es based on the material point method [J]. Journal of Ordnance Equipment Engineering, 2023, 44(4): 194–199. DOI: 10.11809/bqzbgcxb2023.04.027.
    [19] ZHANG X, MA S, HUANG X, et al. Contact algorithms for the material point method in impact and penetration simulation [J]. International Journal for Numerical Methods in Engineering, 2011, 85(4): 498–517. DOI: 10.11809/bqzbgcxb2023.04.027.
    [20] 王宇新, 李晓杰, 杨国俊, 等. 304L/Q235B大面积金属板爆炸焊接物质点法模拟分析 [J]. 爆炸与冲击, 2022, 42(3): 150–159. DOI: 10.11883/bzycj-2021-0198.

    WANG Y X, LI X J, YANG G J, et al. Simulation analysis of 304L/Q235B large-area metal plate explosive we-lding substance point method [J]. Explosion and Shock Waves, 2022, 42(3): 150–159. DOI: 10.11883/bzycj-2021-0198.
    [21] HU W Q, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using theMPM [J]. Interational Journal of lmpact Engineering, 2006, 32(12): 2066–2096. DOI: 10.1016/j.ijimpeng.2005.05.004.
    [22] 张雄, 廉艳平, 杨鹏飞, 等. 冲击爆炸问题的三维物质点法数值仿真 [J]. 计算机辅助工程, 2011, 20(4): 29–37. DOI: 10.3969/j.issn.1006-0871.2011.04.007.

    ZHANG X, LIAN Y P, YANG P F, et al. 3D simulation based on material point method for impact and explosi-on problems [J]. Computer Aided Engineering, 2011, 20(4): 29–37. DOI: 10.3969/j.issn.1006-0871.2011.04.007.
    [23] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with di-fferent hardness [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [24] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain rates and high pressure [C]// JACKSON N, DICKERT S. 14th International Symposium Ballistics. USA: American Defense Preparedness Association, 1995, 591–600.
    [25] ROHR I, NAHME H, THOMA K, et al. Material characterisation and constitutive modelling of a tungsten-sintered alloy for awide range of strain rates [J]. International Journal of Impact Engineering, 2008, 35(8): 811–819. DOI: 10.1016/j.ijimpeng.2007.12.006.
    [26] 杜明燃, 陈宇航, 陆少锋, 等. 基于正交试验法的气泡帷幕削波特性研究 [J]. 高压物理学报, 2023, 37(6): 195–205. DOI: 10.11858/gywlxb.20230684.

    DU M R, CHEN Y H, LU S F, et al. Study on the wave-cutting characteristics of bubble curtain based on orth-ogonal test method [J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 195–205. DOI: 10.11858/gywlxb.20230684.
    [27] 辛春亮, 朱星宇, 薛再清, 等. 有限元分析常用材料参数手册[M]. 2版. 北京: 机械工业出版社, 2022.
  • 加载中
推荐阅读
剪切增稠液填充蜂窝夹芯板的低速冲击响应
李雨薇 等, 爆炸与冲击, 2025
钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能
章浪 等, 爆炸与冲击, 2025
超高速撞击条件下混凝土靶体内 应力波的测量和分析
钱秉文 等, 爆炸与冲击, 2025
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
阻塞弯管中爆轰波传播行为
刘佳伟 等, 高压物理学报, 2025
泡沫混凝土填充蜂窝结构的低速冲击性能研究
袁泉 等, 塑料科技, 2025
服务区透水混凝土道面结构力学行为研究
陈展军 等, 城市道桥与防洪, 2025
Arabinoxylans: a review on protocols for their recovery, functionalities and roles in food formulations
Hernandez-Pinto, Fernanda Jimena et al., INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024
Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
Vibration velocity of x-section cast-in-place concrete (xcc) pile-raft foundation model for a ballastless track
CANADIAN GEOTECHNICAL JOURNAL
Powered by
图(17) / 表(7)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  65
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 修回日期:  2024-03-06
  • 网络出版日期:  2025-03-12

目录

/

返回文章
返回