• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

水下接触爆炸气泡脉动特性的理论研究

王天召 孙远翔 陈岩武

王天召, 孙远翔, 陈岩武. 水下接触爆炸气泡脉动特性的理论研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0092
引用本文: 王天召, 孙远翔, 陈岩武. 水下接触爆炸气泡脉动特性的理论研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0092
WANG Tianzhao, SUN Yuanxiang, CHEN Yanwu. Theoretical study of bubble pulsation characteristics in underwater contact explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0092
Citation: WANG Tianzhao, SUN Yuanxiang, CHEN Yanwu. Theoretical study of bubble pulsation characteristics in underwater contact explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0092

水下接触爆炸气泡脉动特性的理论研究

doi: 10.11883/bzycj-2025-0092
基金项目: 爆炸科学与安全防护全国重点实验室(北京理工大学)自主研究课题探索性项目(YBKT25-04)
详细信息
    作者简介:

    王天召(2001- ),男,硕士,wtz2022@163.com

    通讯作者:

    孙远翔(1967- ),男,副教授,sunyuanxiang002@126.com

  • 中图分类号: O383

Theoretical study of bubble pulsation characteristics in underwater contact explosions

  • 摘要: 为揭示水下接触爆炸气泡脉动特性的变化规律,弥补现有理论对接触爆炸工况研究的不足,基于不可压缩无粘流体假设,建立了刚性壁面接触爆炸的半球形气泡动力学模型,推导了气泡最大半径、初始半径以及脉动周期与自由场参数的定量关系。理论分析表明,接触爆炸气泡最大半径、初始半径及脉动周期为自由场工况的1.26倍(理论比例系数)。通过LS-DYNA软件对0.300、0.233和5.000 g TNT装药在不同水深条件下的水下爆炸进行数值模拟,结果表明接触爆炸气泡最大半径和脉动周期的模拟值分别为自由场气泡的1.22~1.24倍和1.20~1.21倍,与理论预测误差小于5%。进一步通过水箱实验验证,接触爆炸气泡最大半径与周期分别为自由场的1.10倍和1.06倍,实际工况因流体可压缩性、气泡不稳定变形等因素影响,实际比例系数略低于理论比例系数。
  • 图  1  气泡脉动半径变化曲线

    Figure  1.  Bubble pulsation radius change curve

    图  2  水下爆炸气泡脉动有限元模型

    Figure  2.  Finite element models of bubble pulsation in underwater explosion

    图  3  自由场气泡脉动有限元模拟结果

    Figure  3.  Finite element simulation results of free field bubble pulsation

    图  4  接触爆炸气泡脉动有限元模拟结果

    Figure  4.  Finite element simulation results of contact explosion bubble pulsation

    图  5  实验装置

    Figure  5.  Experimental device

    图  6  接触爆炸工况图

    Figure  6.  Contact explosion test condition diagram

    图  7  自由场气泡脉动的实验结果

    Figure  7.  Experimental results of free field bubble pulsation

    图  8  接触爆炸气泡脉动的实验结果

    Figure  8.  Experimental results of bubble pulsation in contact explosion

    图  9  2种工况下气泡脉动半径

    Figure  9.  Bubble pulsation radius under two experimental conditions

    表  1  不同边界条件下工况下气泡脉动特性关系

    Table  1.   Relationship of bubble pulsation characteristics under two different boundary conditions

    特性 关系
    气泡最大半径 Rh,m = 21/3Rm
    气泡初始半径 Rh,0 = 21/3R0
    第1次脉动周期 Th = 21/3T
    下载: 导出CSV

    表  2  不同边界条件下气泡脉动特性实际关系

    Table  2.   The actual relationship of bubble pulsation characteristics under two different boundary conditions

    脉动特性 实际关系
    气泡最大半径 Rh,m < 21/3Rm
    气泡初始半径 Rh,0 < 21/3R0
    第1次脉动周期 Th < 21/3T
    下载: 导出CSV

    表  3  不同边界条件下气泡脉动特性模拟结果与理论结果的对比

    Table  3.   Comparison of simulation and theoretical results of bubble pulsation characteristics under two different boundary conditions

    工况 最大半径/cm 周期/ms
    自由场 接触爆炸 自由场 接触爆炸
    1 10.3 12.6 4.3 5.3
    2 12.6 21.0 2.5 3.0
    3 6.5 7.9 12.9 15.5
    下载: 导出CSV

    表  4  接触爆炸与自由场爆炸中相同气泡脉动特性之间的比例系数

    Table  4.   Scaling factors for bubble pulsation characteristics between contact and free-field explosions

    工况 最大半径比例系数 周期比例系数
    理论 数值模拟 相对误差/% 理论 数值模拟 相对误差/%
    1 1.26 1.22 −3.2 1.26 1.20 −4.7
    2 1.26 1.24 −1.6 1.26 1.21 −4.0
    3 1.26 1.22 −3.2 1.26 1.20 −4.7
    下载: 导出CSV

    表  5  气泡脉动特性试验结果

    Table  5.   Experimental results of bubble pulsation characteristics

    实验 边界条件 气泡最大半径/cm 脉动周期/ms
    1 自由场 9.58 15.9
    2 自由场 9.94 15.9
    3 自由场 9.24 16.1
    平均值 9.59 15.97
    4 接触爆炸 10.58 17.0
    5 接触爆炸 10.54 16.9
    6 接触爆炸 10.67 17.0
    平均值 10.60 16.97
    下载: 导出CSV
  • [1] LAMB H. The early stages of a submarine explosion[J]. The London, Edinburg and Dublin Philosophical Magazine and Journal of Science, 1923: 257–265. DOI: 10.1080/14786442308634111.
    [2] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical[J]. The London, Edinburg and Dublin Philosophical Magazine and Journal of Science, 1917: 94–98. DOI: 10.1080/14786440808635681.
    [3] KELLER J and KOLODNER I I. Damping of underwater explosion bubble oscillations [J]. Journal of Apply Physics, 1956, 27: 1152. DOI: 10.1063/1.1722221.
    [4] KELLER J and MIKSIS M. Bubble oscillations of large amplitude [J]. Journal of the Acoustical Society of American, 1980, 68: 628. DOI: 10.1121/1.384720.
    [5] PROSPERETTI A, LEZZI A. Bubble dynamics in a compressible liquid. Part 1. First-order theory[J]. Journal of Fluid Mechanics , 1986: 457–478. DOI: 10.1017/S0022112086000460.
    [6] LEZZI A, PROSPERETTI A. Bubble dynamics in a compressible liquid. Part 2. Second-order theory [J]. J. Fluid Mech., 1987, 185: 289–321. DOI: 10.1017/S0022112087003185.
    [7] GEERS T L. Transient response analysis of complex submerged structures [J]. J. Acoust. Soc. Am., 1974, 55(S1): 26–26. DOI: 10.1121/1.1919626.
    [8] GEERS T L and HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. DOI: 10.1121/1.1458590.
    [9] GEERS T L. Residual Potential and Approximate Methods for Three-Dimensional Fluid-Structure Interaction Problems [J]. The Journal of the Acoustical Society of America, 1971, 49(5B): 1505–1510. DOI: 10.1121/1.1912526.
    [10] COLE R H. Underwater Explosions. Princeton[M], NJ: Princeton University Press, 1948.
    [11] HUNTER K S, GEERS T L. Pressure and velocity fields produced by an underwater explosion [J]. The Journal of the Acoustical Society of America, 2004, 115(4): 1483–1496. DOI: 10.1121/1.1648680.
    [12] VERNON T A. Whipping Response of Ship Hulls from Underwater Explosion Bubble Loading[R]. 1986.
    [13] ZHANG A M, Li S M, Cui P, et al. A unified theory for bubble dynamics [J]. Physics of Fluids, 2023, 35(3): 033323. DOI: 10.1063/5.0145415.
    [14] ZHANG A M, LI S M, XU R Z, et al. A theoretical model for compressible bubble dynamics considering phase transition and migration [J]. Journal of Fluid Mechanics, 2024, 999: A58. DOI: 10.1017/jfm.2024.954.
    [15] 周霖, 谢中元, 陈勇. 炸药水下爆炸气泡脉动周期工程计算方法 [J]. 兵工学报, 2009, 30(9): 1202–1205. DOI: 10.3321/j.issn:1000-1093.2009.09.010.

    ZHOU L, XIE Z Y, CHEN Y. Engineering calculation method of bubble pulsation period for underwater explosion of explosives [J]. Acta Armamentarii, 2009, 30(9): 1202–1205. DOI: 10.3321/j.issn:1000-1093.2009.09.010.
    [16] 王树山, 梁策, 高源, 等. 深水爆炸二次压力波超压峰值的工程模型 [J]. 兵工学报, 2022, 43(10): 2508–2516. DOI: 10.12382/bgxb.2021.0560.

    WANG S S, LIANG C, GAO Y, et al. Engineering model of overpressure peak of secondary pressure wave in deep water explosion [J]. Acta Armamentarii, 2022, 43(10): 2508–2516. DOI: 10.12382/bgxb.2021.0560.
    [17] 蒋宏杰, 卢文波, 王高辉, 等. 大体积混凝土水下接触爆炸破坏分区特征分析 [J]. 爆炸与冲击, 2023, 43(10): 15–29. DOI: 10.11883/bzycj-2022-0415.

    JIANG H J, LU W B, WANG G H, et al. Analysis of damage zoning characteristics of mass concrete under underwater contact explosion [J]. Explosion and Shock Waves, 2023, 43(10): 15–29. DOI: 10.11883/bzycj-2022-0415.
    [18] 苏怡然. 水下接触爆炸作用下双层防护结构瞬态动力分析方法研究[D]. 上海交通大学, 2013.

    SU Y R. Research on transient dynamic analysis method of double-layer protective structure under underwater contact explosion[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [19] 徐维铮, 黄宇, 李业勋, 等. 水下爆炸近壁面流场局部空化形成机理 [J]. 爆炸与冲击, 2023, 43(3): 30–39. DOI: 10.11883/bzycj-2022-0075.

    XU W Z, HUANG Y, LI Y X, et al. Formation mechanism of local cavitation in near-wall flow field of underwater explosion [J]. Explosion and Shock Waves, 2023, 43(3): 30–39. DOI: 10.11883/bzycj-2022-0075.
    [20] 盛振新, 刘建湖, 毛海斌, 等. 水下接触爆炸对舷侧空舱结构破坏载荷测试技术研究 [J]. 中国测试, 2018, 44(12): 6–11. DOI: 10.11857/j.issn.1674-5124.2018.12.002.

    SHENG Z X, LIU J H, MAO H B, et al. Research on damage load testing technology of bulkhead cabin structure under underwater contact explosion [J]. China Measurement & Test, 2018, 44(12): 6–11. DOI: 10.11857/j.issn.1674-5124.2018.12.002.
    [21] 柴崧淋, 侯海量, 金键, 等. 水下接触爆炸下舷侧防雷舱吸能结构形式试验研究 [J]. 兵工学报, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328.

    CHAI S L, HOU H L, JIN J, et al. Experimental study on energy-absorbing structure form of anti-torpedo cabin under underwater contact explosion [J]. Acta Armamentarii, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328.
    [22] 徐维铮, 赵宏涛, 李业勋, 等. 水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究 [J]. 爆炸与冲击, 2023, 43(9): 209–219. DOI: 10.11883/bzycj-2023-0072.

    XU W Z, ZHAO H T, LI Y X, et al. Experimental study on dynamic response behavior of cylindrical shell structure under underwater close-contact explosion loading [J]. Explosion and Shock Waves, 2023, 43(9): 209–219. DOI: 10.11883/bzycj-2023-0072.
    [23] ZHOU Z T, LIU J H, WANG H K, et al. Experimental and numerical investigation on cavitation collapse reloading and bubble evolution for close-in and contact underwater explosion [J]. Ocean Engineering, 2024, 293: 116549. DOI: 10.1016/j.oceaneng.2023.116549.
    [24] BARRAS G, SOULI M, AQUELET N, et al. Numerical simulation of underwater explosions using an ALE method. the pulsating bubble phenomena [J]. Ocean Engineering, 2012, 41: 53–66. DOI: 10.1016/j.oceaneng.2011.12.015.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  64
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-06-04
  • 网络出版日期:  2025-06-06

目录

    /

    返回文章
    返回