Experimental study on the lethality of blasting warhead with PEEK shell
-
摘要: 为了验证聚醚醚酮(polyether ether ketone, PEEK)作为低附带毁伤战斗部壳体材料的可行性,设计了等厚度聚醚醚酮壳体和2A12铝制壳体作为爆破战斗部外壳。通过静爆威力对比试验,并结合峰值超压测试及高速摄影技术,对超压、比冲量及破片情况进行综合分析。试验结果表明,相同壳体厚度的聚醚醚酮壳体战斗部较2A12铝壳体战斗部质量减轻了一半以上,对人员超压毁伤半径几乎一致,聚醚醚酮壳体战斗部爆轰能量更多转化为冲击波能,且随着比例距离增加,比冲量高于2A12铝;聚醚醚酮壳体在爆炸载荷作用下破碎形成小破片,试验后仅回收到一枚边缘烧蚀的破片。可认为破片飞散时在爆轰产物高温高压作用下全部燃烧,聚醚醚酮壳体不产生杀伤破片,破片附带损伤小。战斗部壳体可采用聚醚醚酮材料,有效控制毁伤范围,满足城市作战中低附带毁伤效果需求。Abstract: In order to lower the collateral damage of warhead in urban warfare, the new material, polyether ether ketone (PEEK) was used as the warhead shell in this work, by which the fragments could be eliminated while the killing range of shock waves was maintained. The comparison between the warhead using PEEK shell and the one with 2A12 shell and identical shell thickness was conducted, in which the overpressure, specific impulse and fragment velocity were analyzed, the acceleration of fragment was recorded by high-speed camera and the fragments were recovered for further investigation. The results show that the warhead using PEEK shell possessed a 54% lower weight than the one using 2A12 shell and an identical overpressure damage radius. By using PEEK shell, the energy converted into shock wave is more than the case using 2A12 shell, thus the specific impulse is also higher as the proportional distance increasing. Few PEEK fragments were recovered since the tiny PEEK fragments formed under the blast loads were completely burned during the acceleration driven by high temperature detonation products. Therefore, the lethality of warhead using PEEK shell was limited to shock wave and was easily controlled to meet the requirement of low collateral damage in urban warfare.
-
Key words:
- lethality of warhead /
- low collateral damage /
- shock overpressure /
- PEEK shell
-
可燃气体着火过程的影响因素、燃烧特性、传播特性等一直是安全领域的研究热点,已取得了许多成果。其中对单质可燃气体的研究成果较多,对混合可燃气体的研究较少,如油气。油气是一种主要由轻质烷烃组成的混合物。混合物的研究较困难,如对汽油燃烧特性的研究,往往采用其替代物进行研究[1-3]。Du等[4]已通过实验研究了油气着火的影响因素,欧益宏等[5]、杜扬等[6]、Ou等[7]已通过实验研究了受限空间爆炸的传播特性。但受实验条件限制,某些研究还有待深入,如温度、压力、火焰速度、湍流变化速度、组分变化速度等参数的演变特征。数值模拟是研究可燃气体着火、爆炸过程的一种有效方法,如Bi等[8]、Wang等[9]、Skjold等[10]研究了具有某种特殊几何结构的封闭管道内的气体爆炸过程,Sarli等[11]研究了有障碍物直管道内的气体爆炸过程。通过数值模拟能获得采用实验方法不能测试和观察到的一些信息,而且还具有安全、经济的特点。但是数值模拟的关键是建立恰当的模型、反应机理和初始条件。吴松林等[12]对油气的化学反应机理进行了简化,为油气着火、爆炸的数值模拟奠定了基础。本文中,基于油气简化机理[12]和实验结果[13],将油气化学动力学、辐射模型和传质相互耦合,通过建立统一控制方程组模型,选择适当的数值解法和初始条件,对持续热壁条件下油气热着火的发生进行数值模拟,以期获得的相关数值结果可作为实验结果的有益补充和启发进一步探讨。
1. 统一控制方程组模型和数值解法
基于实验背景,对受限空间中油气热着火的发生作如下假设:(1)混合气体处于绝热环境中,受限空间与外界的热量传递可忽略;(2)混合气体处于可压缩、低马赫数的二维流动状态;(3)黏性耗散、压缩功的影响可忽略。
油气着火过程是流动过程和组分化学反应过程的耦合。在受限空间持续热壁加热情况下,还要同时考虑热壁与气体之间的对流换热、气体间能量的辐射。因此,对油气热着火需要同时建立化学反应模型、对流换热模型、辐射模型以及综合上述模型的流场控制方程组模型。对化学反应采用吴松林等[12]提出的47个组分、100个基元反应的油气简化机理;对辐射模型采用P-1模型;对加热热壁与可燃气体的对流采用牛顿冷却公式;其他的控制方程有连续方程、动量方程、能量方程、组分方程、k方程、ε方程。化学反应和流场方程通过组分和能量关系直接耦合,辐射模型、对流换热方程与能量方程直接耦合。
统一模型中基本方程组可表示为瞬态项、对流项、扩散项和源项组成通用输运方程:
∂∂t(ρφ)+div(ρuφ)=div(Γ⋅∂φ∂x)+S 式中:φ代表温度、质量分数、单位体积的能量和单位体积的动量等控制变量,Γ为对应的交换系数,S为对应的源项,u为气体的速度。
由于这类方程相互耦合,有强烈的非线性,特别是源项, 因此,采用迭代法进行数值求解,即将方程表示为节点的迭代关系,把连续的基本方程离散化,获得迭代方程。在计算方法上采用有限体积法,在体积域采用混合格式,时间域上采用向后差分格式对控制方程进行离散。控制方程的分离式解法如图 1所示。
2. 初始条件及结果验证
数值模拟区域采用和实验[13]一致的1 700 mm×400 mm绝热受限空间,如图 2所示。模拟区域共分1 400个单元、2 910个内部面、1 511个点。初始压强为一个标准大气压,环境温度为300 K,热壁温度为2 000 K。初始组分如表 1所示。以下通过油气热着火发生过程的流场特征和某些点参数的变化曲线来分析着火特征,选取的7个点位置见图 2。图 3中给出了通过数值模拟获得的热壁表面3个点的温度变化曲线。当热爆炸发生时,热壁表面的临界温度为880 K,这与实验结果877 K[13]基本一致。
表 1 初始组分Table 1. Initial components初始组分 质量分数 摩尔分数 摩尔浓度/(mol·cm-3) CH4 0.01 0.018 2 7.45×10-7 C2H6 0.01 0.009 7 3.98×10-7 C3H8 0.01 0.006 6 2.71×10-7 C4H10 0.01 0.005 0 2.05×10-7 n-C7H16 0.01 0.002 9 1.19×10-7 i-C8H18 0.01 0.002 6 1.04×10-7 O2 0.21 0.192 1 7.85×10-6 N2 0.73 0.763 0 3.12×10-5 3. 数值结果及分析
3.1 温度
3.1.1 温度场变化过程
选取有代表性的6个时间点来刻画温度场和参数的变化过程,如表 2所示,表中t为时间,n为计算步数,Tmax为最高温度,pmax为最高压力,vx, max为最高横向速度,vy, max为最高纵向速度, I为最大扰动强度,其温度场模拟结果如图 4所示。
表 2 热着火过程的6个时间点的基本参数Table 2. Basic parameters of the thermal ignition process at 6 time points时间点 t/ms n Tmax/K pmax/Pa vx, max/(m·s-1) vy, max/(m·s-1) I/% No.1 100.09 10 000 452.12 10 484.3 4.93 4.76 280.551 No.2 413.06 63 000 581.78 92 218.8 66.89 52.59 2 435.931 No.3 413.53 64 800 844.91 127 912.0 109.51 55.40 2 812.672 No.4 413.53 80 000 872.86 144 851.9 100.20 42.66 2 266.638 No.5 413.53 100 000 914.99 179 834.6 99.01 40.38 2 195.186 No.6 414.06 587 200 1271.99 381 857.6 306.55 142.44 14 418.030 图 4(a)显示热对流换热和热辐射后,加热壁上空温度场呈笔尖状,气体流动和升温同时发生;图 4(b)温度场显然受到了流动的影响,其形状有所变化,向一侧倾斜,这同实验的可视化结果[13]完全一致;图 4(c)~(e)显示的现象几乎是瞬间完成的,热着火已经发生,形成燃烧核,同时显示了温度场变化过程也是化学反应和流动的耦合过程,使得燃烧向上和向两侧扩张;图 4(f)显示已经形成了次级燃烧火焰,向两侧扩张,弱冲击波也已经形成。
3.1.2 不同位置的温度突变
(1) 温度存在突变现象,整个热着火发生过程可分成两段,分别为温度受加热壁和缓慢氧化放热影响的温度缓慢上升过程,以及热着火发生后温度跃升过程;
(2) 在温度缓慢上升过程阶段,7个空间点的温度基本呈现与空间相关上升,空间对称两侧的温度并不一定对称;
(3) 在温度缓慢上升过程阶段,受流场的影响,7个点的温度稳定上升;
(4) 从图 5(b)可以发现,尽管起燃时间很短,但还存在2个小的温度突变阶段,说明起燃中存在非线性特性,其原因需要深入研究;
(5) 受流场影响,燃烧过程呈现不对称性。
3.2 压力
3.2.1 压力变化过程
选取与温度场同样的6个时间点,作受限空间的压力等值线, 如图 6所示。图 6(a)中,随着气体受热壁影响,压力开始在热壁上方上升,压缩受限空间的气体,使得受限空间的气体开始向四周流动。从图 6(b)、(c)开始,热着火发生了,压力等值线开始变得稠密。模拟数据结果显示最大压力有1个多大气压,这与实验结果基本一致[13]。图 6(d)中,压力等值线较弯曲,压缩两侧的气体,形状不规则。图 6(e)和(f)的等值线在两侧非常稠密,说明随着气体燃烧强度的增大,两侧的弱冲击波已经形成。但是,燃烧火焰还主要在热壁的中上部,最高压力还处于中间,燃烧化学反应和气体流动的强烈耦合还需要更大的空间,所以总的压力并不高,模拟数据显示最高压力有3个多大气压。
3.2.2 不同位置压力突变
图 7是7个点的压力变化曲线,从图 7可知:(1)热着火发生前,7个点的压力变化不大;(2)热着火发生后,压力也存在阶段性突变特征。在同一时刻,7个点的压力不同,存在很大的差别;(3)从模拟的最后时刻的压力来看,第3~6点的压力很接近,而第7点压力很低,这也说明弱冲击波正在形成。
3.3 主要组分质量变化
3.3.1 主要反应物变化
图 8是1号位置的主要反应物质量变化曲线。从图 8可知,t∈[0, 0.36] s时,主要反应物相差不大,它们的质量分数从0.01还降到了0.009 6,这主要是受热壁加热影响,密度下降的原因。t∈[0.36,0.415] s时,主要反应物呈现了明显的阶段性特征。第1阶段,从0.36 s到0.39 s,主要反应物发生了缓慢氧化反应,浓度呈现下降趋势,特别正庚烷发生了热裂解,质量分数几乎变为了零。第2阶段,从0.39 s到0.40 s,主要反应物质量分数有所增大。主要原因是密度回升,流场影响相对减弱,大分子热裂解成低碳烷烃的因素增加,造成了C1~C4的质量分数增大。第3阶段,从0.40 s到0.41 s,主要反应物发生反应被消耗,浓度降低。0.41 s后,热着火发生,反应速度增大,流场变化加剧,主要反应物质量分数呈现波动。
3.3.2 不同位置的组分质量分数
图 9~13为不同位置主要组分的质量分数变化曲线。从以上反应物在不同阶段的质量分数变化曲线可知:(1)t∈[0, 0.15] s阶段,主要生成物CO、H2O基本没有变化,但随后到0.39 s,这些生成物有较小量级增加,说明随着温度的增加,主要反应物发生了非常缓慢的氧化反应,特别是1号位置表现明显。(2)t∈[0.39, 0.41] s阶段,发生缓慢氧化阶段,生成物不断增加,组分的质量分数与反应强度,流场变化特征、空间位置关系紧密,CO、H2O等组分的质量分数总体增加,O2、轻质烷烃等组分质量分数总体减小,但波动较明显。(3)热着火发生后,主要受燃烧反应强度的影响,反应物减少,生成物增加。从OH基团的变化可以发现不同位置反应强度不同。
综上,受限空间油气热着火发生过程中,无论是缓慢氧化阶段,还是热着火发生过程中,整个受限空间内气体都受到了化学反应和流动的耦合作用,气体间化学反应不断加剧,流动不断增强。但从所起的主导作用来看,加热初期,辐射换热为主导作用;在加热中期,辐射换热和缓慢氧化反应为主导作用;在热着火发生阶段,化学反应和流动强烈耦合,同时占主导作用。
3.4 火焰速度
3.4.1 层流火焰速度
图 14~17为不同位置流场速度变化曲线。由横轴方向层流速度来看:热着火发生前,速度很小,仅有每秒几个厘米,左右流动也基本对称;受受限空间影响,气体流动发生了回流,两侧气体呈现向中间流动的现象。在0.405 s后,热着火发生,形成弱冲击波,气体向两侧流动。速度超过了100 cm/s。从第1和第2点的流动方向来看,热着火发生前,火焰基本呈振动状态,方向不断摆动,热着火发生后火焰偏向右侧,说明有湍流影响流动方向。由纵轴方向的层流速度来看:与横向速度比较,开始加热阶段,最大速度略大,而后受上壁面影响,速度相对减小。起燃阶段,速度方向总体向上,呈现震荡特征。
3.4.2 湍流火焰速度
图 18为不同位置湍流变化曲线。湍流也出现了2个阶段的特征:在加热开始阶段,湍流突然增大,而后略有降低;当热着火发生时,湍流急剧增大。
4. 结论
油气在热壁下的热着火发生过程主要受辐射放热、化学反应和流动的耦合作用,呈现出阶段性。在高温热壁加热初始阶段,加热使得气体膨胀,同时气体温度升高。流动改变了流场流动特征,造成受限空间中组分浓度、流速等参数的变化,辐射放热和流动成为主导作用;在热着火发生前,随着辐射放热进行,热壁上方温度升高,油气缓慢氧化反应放热逐渐成为影响流场特征的主导作用。在热着火发生后,剧烈化学反应和高强度湍流相互耦合,弱冲击波瞬间形成,化学反应和流动同时占主导作用,气体的温度、压力、质量分数、湍流强度等参数均呈现出一定的震荡和非线性特性。
-
表 1 被试品主要参数
Table 1. Main parameters of the tested product
壳体参数 材料 厚度/mm 质量/kg 聚醚醚酮 2.5 0.12 2A12铝 2.5 0.26 表 2 破片速度测试结果
Table 2. Fragment speed test results
壳体材料 测速靶与爆心的
距离/m破片到达
时间/ms破片速度/
(m·s−1)2A12铝 3 1.18 2542.4 4 3.09 1294.5 5 7.09 705.2 6 20.61 291.1 PEEK 3 2.13 1408.5 4 2.96 1351.4 5 — — 6 — — -
[1] 陈志鹏, 马福临, 杨娜娜, 等. 破片群作用下复合材料层合板近场动力学损伤模拟 [J]. 爆炸与冲击, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081.CHEN Z P, MA F L, YANG N N, et al. Peridynamic damage simulation of composite structures subjected to fragment clusters [J]. Explosion and Shock Waves, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081. [2] DENG G Q, YU X. Numerical study on the case effect of a bomb air explosion [J]. Defence Technology, 2021, 17(4): 1461–1470. DOI: 10.1016/j.dt.2020.08.003. [3] XU W L , WANG C , YUAN J M , et al. Investigation on energy output structure of explosives near-ground explosion [J]. Defence Technology, 2019, 16(2): 290–298. DOI: 10.1016/j.dt.2019.08.004. [4] 何翔, 杨建超, 王晓峰, 等. 常规战斗部动爆威力研究综述 [J]. 防护工程, 2022, 44(1): 1–9. DOI: 10.3969/j.issn.1674-1854.2022.01.001.HE XIANG, YANG J C, WANG X F, et al. Overview of conventional warhead dynamic explosion power research [J]. Protective Engineering, 2022, 44(1): 1–9. DOI: 10.3969/j.issn.1674-1854.2022.01.001. [5] 初善勇. 杀伤爆破弹毁伤威力等效评估研究[D]. 沈阳: 沈阳理工大学, 2020.CHU S Y. Study on the equivalent evaluation of the damage power of the high explosive projectile [D]. Shenyang: Shenyang Ligong University, 2020. [6] 陈永新. 美国发展低附带毁伤战斗部技术[C]//战斗部与毁伤效率专业委员会第十届学术年会论文集, 2007: 21–24. [7] 霍奕宇, 王坚茹, 陈智刚, 等. 低附带毁伤战斗部壳体壁厚的优化设计[J]. 兵器材料科学与工程, 2015, 38(5): 89–93. DOI: 10.14024/j.cnki.1004-244x.20150915.002.HUO Y Y, WANG J R, CHEN Z G, et al. Optimized design of case thickness for low collateral damage warhead [J]. Ordnance Material Science and Engineering, 2015, 38(5): 89–93. DOI: 10.14024/j.cnki.1004-244x.20150915.002. [8] 朱亮. 低附带毁伤弹药设计及毁伤原理分析[D]. 南京: 南京理工大学, 2011.ZHU L. Design and damage principle analysis of low incidental damage ammunition [D]. Nanjing: Nanjing University of Science and Technology, 2011. [9] 黄德雨, 张云逸, 王坚茹, 等. 低附带陶瓷球形破片衰减规律研究 [J]. 弹箭与制导学报, 2011, 31(1): 100–102. DOI: 10.3969/j.issn.1673-9728.2011.01.028.HUANG D Y, ZHANG Y Y, WANG J R, et al. A study on distance decay of spherical ceramic fragments with low collateral damage [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(1): 100–102. DOI: 10.3969/j.issn.1673-9728.2011.01.028. [10] 刘俊, 姚文进, 郑宇, 等. 低附带毁伤弹药的炸药/钨粉质量比对钨粉抛撒特性的影响[J]. 含能材料, 2015, 23(3): 258–264. DOI: 10.11943/j.issn.1006-9941.2015.03.011.LIU J, YAO W J, ZHENG Y, et al. Effect of explosive/tungsten power mass ratio for LCD ammunition on dispersal characteristics of tungsten power [J]. Chinese Journal of Energetic Materials, 2015, 23(3): 258–264. DOI: 10.11943/j.issn.1006-9941.2015.03.011. [11] 杨秉妍, 范瑞军, 江自生, 等. 活性元对低附带毁伤弹药的近场超压增强效应/钨粉质量比对钨粉抛撒特性的影响[J]. 高压物理学报, 2022, 36(6): 164–172. DOI: 10.11858/gywlxb.20220568.YANG B Y, FAN R J, JIANG Z S, et al. Effect of near-field overpressure enhancement of reactive material on low collateral damage ammunition [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 164–172. DOI: 10.11858/gywlxb.20220568. [12] 梁斌, 陈忠富, 卢永刚, 等. 不同材料壳体装药对爆破威力影响分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 429–433. DOI: 10.7666/j.issn.1009-3443.20070505.LIANG B, CHEN Z F, LU Y G, et al. Investigation of blast effect of explosive charge with different shell material[J]. Journal of PLA University of Science and Technology, 2007, 8(5): 429–433. DOI: 10.7666/j.issn.1009-3443.20070505. [13] 梁斌, 卢永刚, 杨世全, 等. 不同壳体装药爆炸威力的数值模拟及试验研究[J]. 火炸药学报, 2008, 31(1): 6–11, 15. DOI: 10.3969/j.issn.1007-7812.2008.01.002.LAING B, LU Y G, YANG S Q, et al. Numerical simulation and experiment investigation of blast effect of explosive charge with different shell materials [J]. Chinese Journal of Explosives and Propellants, 2008, 31(1): 6–11, 15. DOI: 10.3969/j.issn.1007-7812.2008.01.002. [14] 姚文进, 王晓鸣, 李文彬, 等. 低附带毁伤弹药爆炸威力的理论分析与试验研究/钨粉质量比对钨粉抛撒特性的影响[J]. 火炸药学报, 2009, 32(2): 21–24. DOI: 10.14077/j.issn.1007-7812.2009.02.011.YAO W J, WANG X M, LI W B, et al. Theory analysis and experiment research on blast effect of low collateral damage ammunition [J]. Chinese Journal of Explosives and Propellants, 2009, 32(2): 21–24. DOI: 10.14077/j.issn.1007-7812.2009.02.011. [15] 杨世全, 孙传杰, 钱立新, 等. 非金属壳体低附带战斗部试验与破片飞散分析/钨粉质量比对钨粉抛撒特性的影响[J]. 高压物理学报, 2018, 32(4): 134–138. DOI: 10.11858/gywlxb.20170573.YANG S Q, SUN C J, QIAN L X, et al. Experimentation and fragment flight analysis of low-collateral-damage warhead with nonmetal shell [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 134–138. DOI: 10.11858/gywlxb.20170573. [16] 左腾. CFRP壳体低附带毁伤性能研究[D]. 北京: 北京理工大学, 2016.ZUO T. Study on the low collateral damage performance of CFRP shell structure [D]. Beijing: Beijing Institute of Technology, 2016. [17] 申超. 重金属粉末嵌层CFRP壳体内爆下低附带毁伤特性表征[D]. 北京: 北京理工大学, 2015.SHEN C. The low collateral damage characterization of CFRP shell structure with heavy mental powder embedded as a layer under implosion [D]. Beijing: Beijing Institute of Technology, 2015. [18] 田春雷. CFRP中厚壁圆筒的动力学行为及其低附带毁伤效应研究[D]. 北京: 北京理工大学, 2014.TIAN C L. Research on dynamical mechanics behavior and low collateral damage effects of moderate thick-walled CFRP shells [D]. Beijing: Beijing Institute of Technology, 2014. [19] 刘俊聪, 刘爱云, 李树虎, 等. 聚醚醚酮复合材料改性研究进展[J]. 工程塑料应用, 2022, 50(2): 169–174. DOI: 10.3969/j.issn.1001-3539.2022.02.030.LIU J C, LIU A Y, LI S H, et al. Research progress on modefication of PEEK composite [J]. Engineering Plastics Application, 2022, 50(2): 169–174. DOI: 10.3969/j.issn.1001-3539.2022.02.030. [20] 刘全义, 彭孝亮, 王东辉, 等. 聚醚醚酮的燃烧性能及其非等温热分解动力学[J]. 合成树脂及塑料, 2022, 39(3): 27–30. DOI: 10.19825/j.issn.1002-1396.2022.03.06.LIU Q Y, PENG X L, WANG D H, et al. Combustion properties and non-isothermal thermal decomposition kinetics of PEEK [J]. China Synthetic Resin and Plastics, 2022, 39(3): 27–30. DOI: 10.19825/j.issn.1002-1396.2022.03.06. [21] 刘湲秋, 汪清漩, 陆懿琳, 等. 聚醚醚酮涂层制备、改性及应用的研究综述[J]. 塑料工业, 2020, 48(10): 1–7. DOI: 10.3969/j.issn.1005-5770.2020.10.001.LIU Y Q, WANG Q X, LU Y L, et al. A review of the preparation, modification and application of PEEK coating [J]. China Plastics Industry, 2020, 48(10): 1–7. DOI: 10.3969/j.issn.1005-5770.2020.10.001. -