Experimental study on the lethality of blasting warhead with PEEK shell
-
摘要: 为了验证聚醚醚酮(polyether ether ketone, PEEK)作为低附带毁伤战斗部壳体材料的可行性,设计了等厚度聚醚醚酮壳体和2A12铝制壳体作为爆破战斗部外壳。通过静爆威力对比试验,并结合峰值超压测试及高速摄影技术,对超压、比冲量及破片情况进行综合分析。试验结果表明,相同壳体厚度的聚醚醚酮壳体战斗部较2A12铝壳体战斗部质量减轻了一半以上,对人员超压毁伤半径几乎一致,聚醚醚酮壳体战斗部爆轰能量更多转化为冲击波能,且随着比例距离增加,比冲量高于2A12铝;聚醚醚酮壳体在爆炸载荷作用下破碎形成小破片,试验后仅回收到一枚边缘烧蚀的破片。可认为破片飞散时在爆轰产物高温高压作用下全部燃烧,聚醚醚酮壳体不产生杀伤破片,破片附带损伤小。战斗部壳体可采用聚醚醚酮材料,有效控制毁伤范围,满足城市作战中低附带毁伤效果需求。Abstract: In order to lower the collateral damage of warhead in urban warfare, the new material, polyether ether ketone (PEEK) was used as the warhead shell in this work, by which the fragments could be eliminated while the killing range of shock waves was maintained. The comparison between the warhead using PEEK shell and the one with 2A12 shell and identical shell thickness was conducted, in which the overpressure, specific impulse and fragment velocity were analyzed, the acceleration of fragment was recorded by high-speed camera and the fragments were recovered for further investigation. The results show that the warhead using PEEK shell possessed a 54% lower weight than the one using 2A12 shell and an identical overpressure damage radius. By using PEEK shell, the energy converted into shock wave is more than the case using 2A12 shell, thus the specific impulse is also higher as the proportional distance increasing. Few PEEK fragments were recovered since the tiny PEEK fragments formed under the blast loads were completely burned during the acceleration driven by high temperature detonation products. Therefore, the lethality of warhead using PEEK shell was limited to shock wave and was easily controlled to meet the requirement of low collateral damage in urban warfare.
-
Key words:
- lethality of warhead /
- low collateral damage /
- shock overpressure /
- PEEK shell
-
表 1 被试品主要参数
Table 1. Main parameters of the tested product
壳体参数 材料 厚度/mm 质量/kg 聚醚醚酮 2.5 0.12 2A12铝 2.5 0.26 表 2 破片速度测试结果
Table 2. Fragment speed test results
壳体材料 测速靶与爆心的
距离/m破片到达
时间/ms破片速度/
(m·s−1)2A12铝 3 1.18 2542.4 4 3.09 1294.5 5 7.09 705.2 6 20.61 291.1 PEEK 3 2.13 1408.5 4 2.96 1351.4 5 — — 6 — — -
[1] 陈志鹏, 马福临, 杨娜娜, 等. 破片群作用下复合材料层合板近场动力学损伤模拟 [J]. 爆炸与冲击, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081.CHEN Z P, MA F L, YANG N N, et al. Peridynamic damage simulation of composite structures subjected to fragment clusters [J]. Explosion and Shock Waves, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081. [2] DENG G Q, YU X. Numerical study on the case effect of a bomb air explosion [J]. Defence Technology, 2021, 17(4): 1461–1470. DOI: 10.1016/j.dt.2020.08.003. [3] XU W L , WANG C , YUAN J M , et al. Investigation on energy output structure of explosives near-ground explosion [J]. Defence Technology, 2019, 16(2): 290–298. DOI: 10.1016/j.dt.2019.08.004. [4] 何翔, 杨建超, 王晓峰, 等. 常规战斗部动爆威力研究综述 [J]. 防护工程, 2022, 44(1): 1–9. DOI: 10.3969/j.issn.1674-1854.2022.01.001.HE XIANG, YANG J C, WANG X F, et al. Overview of conventional warhead dynamic explosion power research [J]. Protective Engineering, 2022, 44(1): 1–9. DOI: 10.3969/j.issn.1674-1854.2022.01.001. [5] 初善勇. 杀伤爆破弹毁伤威力等效评估研究[D]. 沈阳: 沈阳理工大学, 2020.CHU S Y. Study on the equivalent evaluation of the damage power of the high explosive projectile [D]. Shenyang: Shenyang Ligong University, 2020. [6] 陈永新. 美国发展低附带毁伤战斗部技术[C]//战斗部与毁伤效率专业委员会第十届学术年会论文集, 2007: 21–24. [7] 霍奕宇, 王坚茹, 陈智刚, 等. 低附带毁伤战斗部壳体壁厚的优化设计[J]. 兵器材料科学与工程, 2015, 38(5): 89–93. DOI: 10.14024/j.cnki.1004-244x.20150915.002.HUO Y Y, WANG J R, CHEN Z G, et al. Optimized design of case thickness for low collateral damage warhead [J]. Ordnance Material Science and Engineering, 2015, 38(5): 89–93. DOI: 10.14024/j.cnki.1004-244x.20150915.002. [8] 朱亮. 低附带毁伤弹药设计及毁伤原理分析[D]. 南京: 南京理工大学, 2011.ZHU L. Design and damage principle analysis of low incidental damage ammunition [D]. Nanjing: Nanjing University of Science and Technology, 2011. [9] 黄德雨, 张云逸, 王坚茹, 等. 低附带陶瓷球形破片衰减规律研究 [J]. 弹箭与制导学报, 2011, 31(1): 100–102. DOI: 10.3969/j.issn.1673-9728.2011.01.028.HUANG D Y, ZHANG Y Y, WANG J R, et al. A study on distance decay of spherical ceramic fragments with low collateral damage [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(1): 100–102. DOI: 10.3969/j.issn.1673-9728.2011.01.028. [10] 刘俊, 姚文进, 郑宇, 等. 低附带毁伤弹药的炸药/钨粉质量比对钨粉抛撒特性的影响[J]. 含能材料, 2015, 23(3): 258–264. DOI: 10.11943/j.issn.1006-9941.2015.03.011.LIU J, YAO W J, ZHENG Y, et al. Effect of explosive/tungsten power mass ratio for LCD ammunition on dispersal characteristics of tungsten power [J]. Chinese Journal of Energetic Materials, 2015, 23(3): 258–264. DOI: 10.11943/j.issn.1006-9941.2015.03.011. [11] 杨秉妍, 范瑞军, 江自生, 等. 活性元对低附带毁伤弹药的近场超压增强效应/钨粉质量比对钨粉抛撒特性的影响[J]. 高压物理学报, 2022, 36(6): 164–172. DOI: 10.11858/gywlxb.20220568.YANG B Y, FAN R J, JIANG Z S, et al. Effect of near-field overpressure enhancement of reactive material on low collateral damage ammunition [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 164–172. DOI: 10.11858/gywlxb.20220568. [12] 梁斌, 陈忠富, 卢永刚, 等. 不同材料壳体装药对爆破威力影响分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 429–433. DOI: 10.7666/j.issn.1009-3443.20070505.LIANG B, CHEN Z F, LU Y G, et al. Investigation of blast effect of explosive charge with different shell material[J]. Journal of PLA University of Science and Technology, 2007, 8(5): 429–433. DOI: 10.7666/j.issn.1009-3443.20070505. [13] 梁斌, 卢永刚, 杨世全, 等. 不同壳体装药爆炸威力的数值模拟及试验研究[J]. 火炸药学报, 2008, 31(1): 6–11, 15. DOI: 10.3969/j.issn.1007-7812.2008.01.002.LAING B, LU Y G, YANG S Q, et al. Numerical simulation and experiment investigation of blast effect of explosive charge with different shell materials [J]. Chinese Journal of Explosives and Propellants, 2008, 31(1): 6–11, 15. DOI: 10.3969/j.issn.1007-7812.2008.01.002. [14] 姚文进, 王晓鸣, 李文彬, 等. 低附带毁伤弹药爆炸威力的理论分析与试验研究/钨粉质量比对钨粉抛撒特性的影响[J]. 火炸药学报, 2009, 32(2): 21–24. DOI: 10.14077/j.issn.1007-7812.2009.02.011.YAO W J, WANG X M, LI W B, et al. Theory analysis and experiment research on blast effect of low collateral damage ammunition [J]. Chinese Journal of Explosives and Propellants, 2009, 32(2): 21–24. DOI: 10.14077/j.issn.1007-7812.2009.02.011. [15] 杨世全, 孙传杰, 钱立新, 等. 非金属壳体低附带战斗部试验与破片飞散分析/钨粉质量比对钨粉抛撒特性的影响[J]. 高压物理学报, 2018, 32(4): 134–138. DOI: 10.11858/gywlxb.20170573.YANG S Q, SUN C J, QIAN L X, et al. Experimentation and fragment flight analysis of low-collateral-damage warhead with nonmetal shell [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 134–138. DOI: 10.11858/gywlxb.20170573. [16] 左腾. CFRP壳体低附带毁伤性能研究[D]. 北京: 北京理工大学, 2016.ZUO T. Study on the low collateral damage performance of CFRP shell structure [D]. Beijing: Beijing Institute of Technology, 2016. [17] 申超. 重金属粉末嵌层CFRP壳体内爆下低附带毁伤特性表征[D]. 北京: 北京理工大学, 2015.SHEN C. The low collateral damage characterization of CFRP shell structure with heavy mental powder embedded as a layer under implosion [D]. Beijing: Beijing Institute of Technology, 2015. [18] 田春雷. CFRP中厚壁圆筒的动力学行为及其低附带毁伤效应研究[D]. 北京: 北京理工大学, 2014.TIAN C L. Research on dynamical mechanics behavior and low collateral damage effects of moderate thick-walled CFRP shells [D]. Beijing: Beijing Institute of Technology, 2014. [19] 刘俊聪, 刘爱云, 李树虎, 等. 聚醚醚酮复合材料改性研究进展[J]. 工程塑料应用, 2022, 50(2): 169–174. DOI: 10.3969/j.issn.1001-3539.2022.02.030.LIU J C, LIU A Y, LI S H, et al. Research progress on modefication of PEEK composite [J]. Engineering Plastics Application, 2022, 50(2): 169–174. DOI: 10.3969/j.issn.1001-3539.2022.02.030. [20] 刘全义, 彭孝亮, 王东辉, 等. 聚醚醚酮的燃烧性能及其非等温热分解动力学[J]. 合成树脂及塑料, 2022, 39(3): 27–30. DOI: 10.19825/j.issn.1002-1396.2022.03.06.LIU Q Y, PENG X L, WANG D H, et al. Combustion properties and non-isothermal thermal decomposition kinetics of PEEK [J]. China Synthetic Resin and Plastics, 2022, 39(3): 27–30. DOI: 10.19825/j.issn.1002-1396.2022.03.06. [21] 刘湲秋, 汪清漩, 陆懿琳, 等. 聚醚醚酮涂层制备、改性及应用的研究综述[J]. 塑料工业, 2020, 48(10): 1–7. DOI: 10.3969/j.issn.1005-5770.2020.10.001.LIU Y Q, WANG Q X, LU Y L, et al. A review of the preparation, modification and application of PEEK coating [J]. China Plastics Industry, 2020, 48(10): 1–7. DOI: 10.3969/j.issn.1005-5770.2020.10.001.