不同速度下负泊松比弧形结构的变形行为

罗伟洪 何婉青 吴文军 李世强 王志勇

罗伟洪, 何婉青, 吴文军, 李世强, 王志勇. 不同速度下负泊松比弧形结构的变形行为[J]. 爆炸与冲击, 2023, 43(11): 113102. doi: 10.11883/bzycj/2022-0520
引用本文: 罗伟洪, 何婉青, 吴文军, 李世强, 王志勇. 不同速度下负泊松比弧形结构的变形行为[J]. 爆炸与冲击, 2023, 43(11): 113102. doi: 10.11883/bzycj/2022-0520
LUO Weihong, HE Wanqing, WU Wenjun, LI Shiqiang, WANG Zhiyong. Deformation behavior of curved structures with negative Poisson’s ratio under diverse loading velocities[J]. Explosion And Shock Waves, 2023, 43(11): 113102. doi: 10.11883/bzycj/2022-0520
Citation: LUO Weihong, HE Wanqing, WU Wenjun, LI Shiqiang, WANG Zhiyong. Deformation behavior of curved structures with negative Poisson’s ratio under diverse loading velocities[J]. Explosion And Shock Waves, 2023, 43(11): 113102. doi: 10.11883/bzycj/2022-0520

不同速度下负泊松比弧形结构的变形行为

doi: 10.11883/bzycj/2022-0520
基金项目: 国家自然科学基金(12272257);山西省自然科学基金面上项目(202203021211169)
详细信息
    作者简介:

    罗伟洪(1998- ),男,硕士研究生,754314343@qq.com

    通讯作者:

    王志勇(1982- ),男,博士,副教授,wangzhiyong@tyut.edu.cn

  • 中图分类号: O347

Deformation behavior of curved structures with negative Poisson’s ratio under diverse loading velocities

  • 摘要: 高孔隙率的负泊松比蜂窝结构在能量吸收的过程中往往伴随剧烈的应力波动和显著的峰值应力,极易造成蜂窝结构的局部损坏,影响能量的连续吸收。为了减少局部破坏的产生,基于传统内凹六边形蜂窝胞元设计了一种反对称的弧形胞元,并通过不同的阵列方向,得到了2种新型反对称负泊松比弧形蜂窝结构。采用准静态压缩试验和有限元模拟的方法,探究了速度梯度对新型反对称弧形蜂窝结构模型的整体变形模式,不同层水平应变分布,变形机理,以及抗冲击性的影响。研究结果表明:不同于传统负泊松比蜂窝模型中出现大量的局部密实化区域,新型反对称负泊松比弧形蜂窝结构中局部密实带明显减少,结构中多层胞元组成的变形区域同时参与变形,整体表现出十分稳定的变形模式。这与最大水平应变的提高以及新型蜂窝结构抗冲击性的增强密切相关,特别是在中速模式下,新型反对称弧形蜂窝模型抗冲击性明显增强,冲击载荷效率达到78%,远高于传统蜂窝模型43%的冲击载荷效率;此外,反对称弧形蜂窝结构胞元还带动了相邻胞元之间的胞壁发生向上弯曲来抵抗弯矩。在低速模式下,2种新型反对称弧形蜂窝模型的最大水平应变分别提高了100%、36%;在中速模式下,2种模型均提高了39%。
  • 图  1  RH、CRH-1和CRH-2三种蜂窝模型设计思路

    Figure  1.  RH, CRH-1 and CRH-2 Three types of cellular model design ideas

    图  2  3D打印模型尺寸

    Figure  2.  3D printed model size

    图  3  准静态下3种模型应力-应变曲线

    Figure  3.  Quasi-static stress-strain curves for three models

    图  4  准静态下3种结构的变形模式

    Figure  4.  Three kinds of model deformation under quasi-static loading

    图  5  模型加载边界条件

    Figure  5.  Loading boundary conditions

    图  6  有限元模型

    Figure  6.  Finite element models

    图  7  RH模型的变形模式

    Figure  7.  Deformation modes of the RH model

    图  8  名义应力-应变曲线

    Figure  8.  Nominal stress-strain curves

    图  9  不同速度下RH模型每一层的水平应变分布

    Figure  9.  Horizontal strain distribution of each layer of the RH model at different velocities

    图  10  不同速度下CRH-1模型每一层的水平应变分布

    Figure  10.  Horizontal strain distribution of each layer of the CRH-1 model at different velocities

    图  11  不同速度下CRH-2模型每一层的水平应变分布

    Figure  11.  Horizontal strain distribution of each layer of the CRH-2 model at different velocities

    图  12  低速模式

    Figure  12.  Low-velocity mode

    图  13  高速模式

    Figure  13.  High-velocity mode

    图  14  RH、CRH-1和CRH-2模型在不同速度下的应变-应力曲线

    Figure  14.  Strain-stress curves of RH, CRH-1 and CRH-2 models under different velocities

    表  1  材料属性

    Table  1.   Material properties

    材料 密度/(kg·m−3 弹性模量/GPa 泊松比 初始屈服强度/MPa 断裂应变
    PolyMaxTMPLA 1180 1.97 0.35 40 0.3
    下载: 导出CSV

    表  2  3种模型在10 m/s 速度下的变形模式

    Table  2.   Deformation patterns of three types of models under 10 m/s velocity

    ε RH CRH-1 CRH-2
    0.1
    0.3
    0.5
    0.7
    下载: 导出CSV

    表  3  3种模型在50 m/s 速度下的变形模式

    Table  3.   Deformation patterns of three types of models under 50 m/s velocity

    ε RH CRH-1 CRH-2
    0.1
    0.3
    0.5
    0.7
    下载: 导出CSV

    表  4  3种模型在100 m/s速度下的变形模式

    Table  4.   Deformation patterns of three types of models under 100 m/s velocity

    ε RH CRH-1 CRH-2
    0.1
    0.3
    0.5
    0.7
    下载: 导出CSV
  • [1] YAO Y Z, SHEN Y X, ZHU L Q, et al. Preliminary study and bioinformatics analysis on the potential role of CagQ in type IV secretion system of H. pylori [J]. Microbial Pathogenesis, 2018, 116: 1–7. DOI: 10.1016/j.micpath.2017.12.076.
    [2] KUMAR P, KUCHEROV L, RYVKIN M. Fracture toughness of self-similar hierarchical material [J]. International Journal of Solids and Structures, 2020, 203: 210–223. DOI: 10.1016/j.ijsolstr.2020.07.011.
    [3] WANG Z G. Recent advances in novel metallic honeycomb structure [J]. Composites Part B: Engineering, 2019, 166: 731–741. DOI: 10.1016/j.compositesb.2019.02.011.
    [4] SPADONI A, RUZZENE M, SCARPA F. Dynamic response of chiral truss-core assemblies [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(11): 941–952. DOI: 10.1177/1045389x06060219.
    [5] QI C, JIANG F, YANG S, et al. Dynamic crushing response of novel re-entrant circular auxetic honeycombs: numerical simulation and theoretical analysis [J]. Aerospace Science and Technology, 2022, 124: 107548. DOI: 10.1016/j.ast.2022.107548.
    [6] LI S Q, YU B L, KARAGIOZOVA D, et al. Experimental, numerical, and theoretical studies of the response of short cylindrical stainless steel tubes under lateral air blast loading [J]. International Journal of Impact Engineering, 2019, 124: 48–60. DOI: 10.1016/j.ijimpeng.2018.10.004.
    [7] ALMGREN R F. An isotropic three-dimensional structure with Poisson’s ratio=−1 [J]. Journal of Elasticity, 1985, 15(4): 427–430. DOI: 10.1007/BF00042531.
    [8] WILT J K, YANG C, GU G X. Accelerating auxetic metamaterial design with deep learning [J]. Advanced Engineering Materials, 2020, 22(5): 1901266. DOI: 10.1002/adem.201901266.
    [9] 韩会龙, 张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究 [J]. 振动与冲击, 2017, 36(23): 223–231. DOI: 10.13465/j.cnki.jvs.2017.23.033.

    HAN H L, ZHANG X C. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures [J]. Journal of Vibration and Shock, 2017, 36(23): 223–231. DOI: 10.13465/j.cnki.jvs.2017.23.033.
    [10] XIAO D B, DONG Z C, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis [J]. Materials Science and Engineering: A, 2019, 758: 163–171. DOI: 10.1016/j.msea.2019.04.116.
    [11] ZHANG J J, LU G X. Dynamic tensile behaviour of re-entrant honeycombs [J]. International Journal of Impact Engineering, 2020, 139: 103497. DOI: 10.1016/j.ijimpeng.2019.103497.
    [12] HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation [J]. Thin-Walled Structures, 2018, 131: 373–384. DOI: 10.1016/j.tws.2018.04.020.
    [13] JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
    [14] FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications [J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. DOI: 10.1088/2631-7990/ac5be6.
    [15] DONG Z C, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb [J]. Materials & Design, 2019, 182: 108036. DOI: 10.1016/j.matdes.2019.108036.
    [16] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性 [J]. 爆炸与冲击, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281.

    HAN H L, ZHANG X C, WANG P. Dynamic responses and energy absorption properties of honeycombs with negative Poisson’s ratio [J]. Explosion and Shock Waves, 2019, 39(1): 013103. DOI: 10.11883/bzycj-2017-0281.
    [17] GUO Y G, ZHANG J, CHEN L M, et al. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load [J]. Aerospace Science and Technology, 2020, 98: 105662. DOI: 10.1016/j.ast.2019.105662.
    [18] XIAO D B, KANG X, LI Y, et al. Insight into the negative Poisson’s ratio effect of metallic auxetic reentrant honeycomb under dynamic compression [J]. Materials Science and Engineering: A, 2019, 763: 138151. DOI: 10.1016/j.msea.2019.138151.
    [19] LIU W Y, WANG N L, LUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure [J]. Materials & Design, 2016, 100: 84–91. DOI: 10.1016/j.matdes.2016.03.086.
    [20] KOOISTRA G W, DESHPANDE V S, WADLEY H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium [J]. Acta Materialia, 2004, 52(14): 4229–4237. DOI: 10.1016/j.actamat.2004.05.039.
    [21] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 1-13. DOI: 10.1017/CBO9781139878326.
    [22] QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, part Ⅱ: dynamic crushing based on finite element simulation [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1231–1241. DOI: 10.1016/j.ijimpeng.2009.05.010.
    [23] SUN D Q, ZHANG W H, ZHAO Y C, et al. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs [J]. Composite Structures, 2013, 96: 726–735. DOI: 10.1016/j.compstruct.2012.10.008.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  116
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-05-12
  • 网络出版日期:  2023-05-31
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回