Regulation of different quantity TNT blasting in multi-cabin structure based on simulation and dimensional analysis
-
摘要: 利用流固耦合算法,模拟了不同药量TNT内爆下大尺寸多舱室结构的毁伤效应。将各舱室划分为爆炸舱、共面邻舱、共边界邻舱和共点邻舱,再划分内爆下多舱室结构的毁伤等级。通过量纲分析,研究了内爆载荷下舱壁的变形失效规律,推导了内爆下多舱室结构的无量纲毁伤数,该毁伤数考虑了内爆载荷、材料性能和作用空间等因素,最后给出快速毁伤预测方法。研究结果表明:(1)内爆下多舱室结构的毁伤特点主要表现为舱壁挠曲变形、舱壁中心冲切失效、舱壁边界撕裂;(2)舱壁挠曲变形的挠厚比δ/H和固定边界撕裂的裂缝长厚比l/H均与药量-单舱室容积比m/V有明显线性关系;(3)提出的无量纲毁伤数和快速预测方法能够反映内爆下多舱室结构的毁伤情况,可为舰船毁伤研究提供参考。Abstract: This paper simulated damage effect of the large size multi-cabin structure under internal blast. Cabins were divided into: explosion cabin, coplanar cabin, common boundary cabin and common point cabin, and the damage grade was presented to reflect the destructiveness. This paper studied the regulation of deformation and failure of bulkhead under internal blast by the dimensional analysis, in which a dimensionless damage number was deduced. Furthermore, the number can reflect the characteristics of internal explosive load, material properties and structure. Finally, a rapid damage prediction method was given. The analysis result shows: (1) the characteristics of damage include large deflection deformation, punching failure in the center of plate, tearing along the boundary; (2) the ratio of deflection to thickness (δ/H) has clear linear relationship with the ratio of the quantity to the volume of the cabin (m/V), and so is the ratio of length to thickness of tearing (l/H); (3) the dimensionless damage number and method of rapid damage assessment can reflect the destructiveness, which means the result and analysis method of this paper can provide valuable reference for the research of ship damage.
-
表 1 实测压力峰值和数值模拟计算结果的对比
Table 1. Comparison of measured peak pressures and numerical simulation results
测点 压力峰值/MPa 模拟计算
误差/%实测 模拟计算 经验公式 P1 1.180 1.153 0.928 −2.29 P2 0.157 0.171 0.150 8.92 P3 0.449 0.471 0.451 4.90 表 2 结构分类
Table 2. Structural classification
类别 分类 具体描述 邻舱 C1 共面邻舱 C2 共边界邻舱 C3 共点邻舱 舱壁 A1 共面邻舱中的外围(灰色)舱壁 A2 共面邻舱中的(绿色)舱壁 A3 共边界邻舱中的外围(蓝色)舱壁 A4 共点邻舱的所有舱壁(橙色) 边界 B1 共边界邻舱和爆炸舱的共有(黄色)边界 B2 共面邻舱和共点邻舱的共有(黑色)边界 表 3 毁伤等级的描述
Table 3. Description of damage grade
毁伤等级 破损现象描述 G1 爆炸舱舱壁均向外挠曲变形,但未破损 G2 爆炸舱舱壁中心发生冲切破坏,甚至有破片飞出,残余舱壁有翻转撕裂或卷边现象;A1类舱壁向外挠曲变形,但未破损 G3 爆炸舱舱壁沿边界剪切失效后飞出;A1类舱壁的中心产生破口,甚至有破片飞出,残余舱壁发生翻转撕裂 G4 A2类舱壁沿B2类边界从靠近爆源一端向外撕裂破坏,此外A2类舱壁在垂直裂缝的方向上也有不同程度撕裂破坏;
共点邻舱共点处的A4类舱壁均向该舱室内部塌陷挠曲变形;A3类舱壁向外挠曲变形G5 A2类舱壁间的B1类边界从两端向中心撕裂贯穿;
甚至在共点邻舱共点处的A4类舱壁的三面交接处发生反向撕裂,并伴随B2类边界不规则的扭曲现象表 4 数值模拟结果与准静态压力经验公式结果的对比
Table 4. Comparison between numerical simulation results and quasi-static pressure empirical formula results
m/kg pqs/MPa 相对误差/% Carlson公式 数值模拟 20 2.364 2.210 –6.51 30 0.678 0.651 –3.98 40 0.881 0.815 –7.49 60 1.219 1.104 –9.43 80 1.564 1.526 –2.43 130 2.414 2.266 –6.13 -
[1] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011.HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011. [2] 樊壮卿, 王伟力, 黄雪峰, 等. 典型舱室内爆炸仿真分析 [J]. 工程爆破, 2015, 21(3): 13–17. DOI: 10.3969/j.issn.1006-7051.2015.03.004.FAN Z Q, WANG W L, HUANG X F, et al. Simulation analysis on typical cabin internal explosion [J]. Engineering Blasting, 2015, 21(3): 13–17. DOI: 10.3969/j.issn.1006-7051.2015.03.004. [3] 孔祥韶, 吴卫国, 李俊, 等. 角隅结构对舱内爆炸载荷影响的实验研究 [J]. 中国造船, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007.KONG X S, WU W G, LI J, et al. Experimental research of influence of corner structure on blast loading under inner explosion [J]. Shipbuilding of China, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007. [4] 孔祥韶, 徐维铮, 郑成, 等. 多层防护结构舱内爆炸试验 [J]. 船舶力学, 2017, 21(1): 76–89. DOI: 10.3969/j.issn.1007-7294.2017.01.010.KONG X S, XU W Z, ZHENG C, et al. Experiment of a multi-layer protective structure under an inner explosion [J]. Journal of Ship Mechanics, 2017, 21(1): 76–89. DOI: 10.3969/j.issn.1007-7294.2017.01.010. [5] 严波, 彭兴宁, 潘建强. 舱室爆炸载荷作用下舷侧防护结构的响应研究 [J]. 船舶力学, 2009, 13(1): 107–114. DOI: 10.3969/j.issn.1007-7294.2009.01.014.YAN B, PENG X N, PAN J Q. Investigation of the response of broadside protection structure subjected to internal blast loading [J]. Journal of Ship Mechanics, 2009, 13(1): 107–114. DOI: 10.3969/j.issn.1007-7294.2009.01.014. [6] 李营, 张磊, 杜志鹏, 等. 舱室结构在战斗部舱内爆炸作用下毁伤特性的实验研究 [J]. 船舶力学, 2018, 22(8): 993–1000. DOI: 10.3969/j.issn.1007-7294.2018.08.009.LI Y, ZHANG L, DU Z P, et al. Experiment investigation on damage characteristic of cabins under warhead internal blast [J]. Journal of Ship Mechanics, 2018, 22(8): 993–1000. DOI: 10.3969/j.issn.1007-7294.2018.08.009. [7] 姚术健. 箱形结构内部爆炸等效缩比实验方法及破坏特性研究[D]. 长沙: 国防科学技术大学, 2016: 126–132. [8] 刘邦鑫. 舰船多舱室爆炸致比格犬颅脑爆震伤的实验研究[D]. 上海: 第二军医大学, 2017: 35–39. [9] 姚熊亮, 屈子悦, 姜子飞, 等. 舰船舱内爆炸载荷特征与板架毁伤规律分析 [J]. 中国舰船研究, 2018, 13(3): 140–148. DOI: 10.19693/j.issn.1673-3185.01162.YAO X L, QU Z Y, JIANG Z F, et al. Analysis on characteristics of blast loading and stiffened plate damage due to internal blast in ship [J]. Chinese Journal of Ship Research, 2018, 13(3): 140–148. DOI: 10.19693/j.issn.1673-3185.01162. [10] 张伟, 岳永威, 张阿漫, 等. 基于AUTODYN的气泡与固定壁面相互作用数值模拟 [J]. 中国舰船研究, 2012, 7(6): 23–30. DOI: 10.3969/j.issn.1673-3185.2012.06.004.ZHANG W, YUE Y W, ZHANG A M, et al. Numerical simulation of underwater explosion bubble interactions with a solid boundary based on AUTODYN [J]. Chinese Journal of Ship Research, 2012, 7(6): 23–30. DOI: 10.3969/j.issn.1673-3185.2012.06.004. [11] 南宇翔, 蒋建伟, 王树有, 等. 一种与爆轰参数封闭的JWL方程参数确定方法 [J]. 爆炸与冲击, 2015, 35(2): 157–163. DOI: 10.11883/1001-1455(2015)02-0157-07.NAN Y X, JIANG J W, WANG S Y, et al. One parameter-obtained method for JWL equation of state considered detonation parameters [J]. Explosion and Shock Waves, 2015, 35(2): 157–163. DOI: 10.11883/1001-1455(2015)02-0157-07. [12] 连赟猛. 典型密闭装置内爆炸试验及其数值模拟[D]. 南京: 南京理工大学, 2013: 13–21. [13] 李世明, 梁仕发, 周丰峻. 强冲击波反射系数的计算 [J]. 防护工程, 2003, 25(4): 69–73. [14] 张国伟. 终点效应及其应用技术 [M]. 北京: 国防工业出版社, 2006: 167−168. [15] 李德聪, 段宏, 吴国民, 等. 船内爆炸载荷特性及对舰船结构毁伤研究综述 [J]. 中国舰船研究, 2018, 13(1): 7–16. DOI: 10.3969/j.issn.1673-3185.2018.01.002.LI D C, DUAN H, WU G M, et al. Advances in the research of warship structural damage due to inner explosion [J]. Chinese Journal of Ship Research, 2018, 13(1): 7–16. DOI: 10.3969/j.issn.1673-3185.2018.01.002. [16] BAKERW E. Explosion in air [M]. Austin, Texas, US: University of Texas Press, 1973. [17] YAO S J, ZHANG D, LU F Y. Dimensionless numbers for dynamic response analysis of clamped square plates subjected to blast loading [J]. Archive of Applied Mechanics, 2015, 85(6): 735–744. DOI: 10.1007/s00419-015-0986-7. [18] 赵亚溥. 断裂力学中的相似方法 [J]. 力学进展, 1998, 28(3): 323–338. DOI: 10.6052/1000-0992-1998-3-J1998-148.ZHAO Y P. Similarity method in fracture mechanics [J]. Advances in Mechanics, 1998, 28(3): 323–338. DOI: 10.6052/1000-0992-1998-3-J1998-148. [19] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading-a reviewpart Ⅱ: experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8. [20] 付跃升, 张庆明. 爆炸荷载作用下弹性薄板的动态响应 [J]. 北京理工大学学报, 2007, 27(7): 572–575. DOI: 10.3969/j.issn.1001-0645.2007.07.003.FU Y S, ZHANG Q M. Calculating dynamic parameters in elastic thin plates under blast loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(7): 572–575. DOI: 10.3969/j.issn.1001-0645.2007.07.003. [21] 吴有生, 彭兴宁, 赵本立. 爆炸载荷作用下舰船板架的变形与破损 [J]. 中国造船, 1995(4): 55–61. [22] 张晓伟, 汪庆桃, 张庆明, 等. 爆炸冲击波作用下混凝土板的载荷等效方法 [J]. 兵工学报, 2013, 34(3): 263–268. DOI: 10.3969/j.issn.1000-1093.2013.03.002.ZHANG X W, WANG Q T, ZHANG Q M, et al. Equivalence method for the dynamic loading of concrete slab subjected to explosion [J]. Acta Armamentarii, 2013, 34(3): 263–268. DOI: 10.3969/j.issn.1000-1093.2013.03.002. [23] 余俊, 张伦平, 潘建强, 等. 舰船结构舱内爆炸破损范围计算方法研究 [C] // 第十届全国冲击动力学讨论会论文集. 太原: 中国力学学会, 2011: 1–10.