Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method
-
摘要: 基于非线性波动理论模型,求解储液容器内液体晃动的固有频率、模态及动力学响应问题。流体使用us-up状态方程,利用ABAQUS软件的自适应网格技术,建立储液容器液体晃动数学模型,通过施加水平简谐激励得到液体晃动的固有频率和模态,并与解析解对比,验证了该方法的准确性与可行性。然后,分析了矩形储液容器在多种激励作用下液体非线性晃动响应特性。Abstract: Based on the nonlinear wave theory, a mathematical model was proposed by applying the adaptive meshing technique in the ABAQUS code.And in the proposed model, the linear us-up Hugoniot equation of state was used for liquid.By using the proposed model, nonlinear harmonic response simulations were performed to numerically obtain the eigenfrequencies and the modals of the liquid sloshing in the tank-liquid system subjected to horizontal excitations.And the numerical results were compared with the analytical solutions to illuminate the reliability and availability of the proposed method.Finally, the nonlinear sloshing response characteristics of a rectangular liquid storage container were analyzed under a variety of excitations.
-
Key words:
- fluid mechanics /
- modal /
- nonlinear dynamics /
- liquid sloshing /
- liquid-filled container /
- seismic response
-
爆炸力学或称爆炸与冲击动力学,主要研究爆炸现象的发生、发展规律和爆炸的力学效应。爆炸力学的研究领域主要涉及起点阶段爆炸瞬间爆炸波的产生与演化问题、中间阶段爆炸产生的冲击波或其他类型应力波在不同介质中的传播与演化问题、终点阶段爆炸或冲击作用下材料或结构的动力学响应问题;其属于流体力学、固体力学和物理学、化学之间的一门交叉学科,也是终点弹道学的研究基础之一。爆炸力学是一门技术驱动的学科,正如钱学森先生所言“由于爆炸力学要处理的问题远比经典的固体力学或流体力学要复杂,似乎不宜一下子想从力学基本原理出发,构筑爆炸力学理论。近期还是靠小尺寸模型实验,……”,爆炸力学问题大多为强非线性且多因素耦合,很多核心问题很难甚至当前无法通过理论来解析之;因而,实验技术对于爆炸力学问题的研究及其学科发展显得格外重要。爆炸力学实验技术主要关注于爆炸力学中的实验技术相关理论和方法,针对爆炸力学问题所涉及的瞬时、高放能、强破坏等学科特点,聚焦发展相应的动态加载和诊断技术,开展爆炸现象、毁伤效应、材料和结构动态响应等问题的研究,是国防工业创新发展的核心基石之一。
随着科技进步与发展、国家各部门大力资助、科技工作者辛勤创造,爆炸力学实验技术得到迅速发展,研制了一批新型加载装置,发展了一系列新的测试技术,并成功地应用于爆炸力学相关科学研究和工程实践。为推动爆炸力学的进一步创新发展,促进爆炸力学实验技术在航空航天、船舶、兵器等国防领域的应用,爆炸力学实验技术专业组每两年召开一次全国爆炸力学实验技术学术会议,邀请爆炸力学实验技术领域的同行交流最新研究成果,切磋新的实验与测试技术,探讨新的发展方向。
为集中展现我国在爆炸力学实验技术领域最新研究成果,《爆炸与冲击》编辑部于2020年和爆炸力学实验技术专业组一起策划了“爆炸力学实验技术”专题。专题论文遴选自第十一届爆炸力学实验技术专题研讨会,并经过同行专家的严格评审。本专题在编辑、出版过程中得到了“第十一届爆炸力学实验技术专题研讨会”大会组织委员会、作者、审稿专家、编委和《爆炸与冲击》编辑部的大力支持,在此表示衷心的感谢。
国防科技大学教授、博士生导师 卢芳云 《爆炸与冲击》编委 -
表 1 液体自由晃动频率
Table 1. Frequencies of liquid sloshing
n ωnum/(rad·s-1) ωana/(rad·s-1) εω/% 1 3.20 3.20 0 2 4.51 4.52 0.221 2 3 5.60 5.53 1.265 8 -
[1] Hasheminejad S M, Aghabeigi M. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles[J]. Applied Mathematical Modelling, 2012, 36(1): 57-71. doi: 10.1016/j.apm.2011.02.026 [2] Xue Mi-an, Lin Peng-zhi. Numerical study of ring baffle effects on reducing violent liquid sloshing[J]. Computers & Fluids, 2011, 52: 116-129. http://www.sciencedirect.com/science/article/pii/S0045793011002921 [3] Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid flow calculations[J]. Journal of Computational Physics, 1970, 6(2): 322-325. doi: 10.1016/0021-9991(70)90029-X [4] Armenio V. An improved MAC method(SIMAC)for unsteady high-reynolds free surface flows[J]. International Journal for Numerical Methods in Fluids, 1997, 24(2): 185-214. doi: 10.1002/(SICI)1097-0363(19970130)24:2<185::AID-FLD487>3.0.CO;2-Q [5] 包光伟, 王振强, 张天翔.火箭推进剂液体晃动关机响应的数值仿真[J].宇航学报, 2002, 23(2): 84-88. doi: 10.3321/j.issn:1000-1328.2002.02.018Bao Guang-wei, Wang Zhen-qiang, Zhang Tian-xiang. Numerical simulation of slosh of the propellant fuel during the period the shut-down of the rocket[J]. Jourual of Astronautics, 2002, 23(2): 84-88. doi: 10.3321/j.issn:1000-1328.2002.02.018 [6] Jung J H, Yoon H S, Lee C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44: 79-89. doi: 10.1016/j.oceaneng.2012.01.034 [7] 刘永涛, 马宁, 顾解忡.各种激励作用下液舱内液体晃荡的计算与分析[J].船海工程, 2009, 38(5): 7-12. doi: 10.3963/j.issn.1671-7953.2009.05.002Liu Yong-tao, Ma Ning, Gu Xie-chong. Calculation and analysis of liquid sloshing loads in tanks under different kinds of stimulations[J]. Ship and Ocean Engineering, 2009, 38(5): 7-12. doi: 10.3963/j.issn.1671-7953.2009.05.002 [8] 周宏, 李俊峰, 王天舒.用ALE有限元模拟的网格更新方法[J].力学学报, 2008, 40(2): 267-272. http://www.cqvip.com/qk/91029x/200802/26789636.htmlZhou Hong, Li Jun-feng, Wang Tian-shu. Mesh update algorithm in ale finite method within free surface flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 267-272. http://www.cqvip.com/qk/91029x/200802/26789636.html [9] Sygulski R. Boundary element analysis of liquid sloshing in baffled tanks[J]. Engineering Analysis with Boundary Elements, 2011, 35(8): 978-983. doi: 10.1016/j.enganabound.2011.03.001 [10] Wang C Z, Khoo B C. Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations[J]. Ocean Engineering, 2005, 32(2): 107-133. doi: 10.1016/j.oceaneng.2004.08.001 [11] ABAQUS/explicit user's manual: Version 6.4[M]. Rhode Island: Hibbit, Karlsson and Sorensen Inc, 2002. [12] ABAQUS/theory user's manual: Version 6.4[M]. Rhode Island: Hibbit, Karlsson and Sorensen Inc, 2002. [13] 梅强中.水波动力学[M].北京: 科学出版社, 1984. -