储液容器内液体晃荡的非线性动力学分析

李文盛 赵友清 贾善坡 王凯 谭继可

李文盛, 赵友清, 贾善坡, 王凯, 谭继可. 储液容器内液体晃荡的非线性动力学分析[J]. 爆炸与冲击, 2014, 34(1): 87-92.
引用本文: 李文盛, 赵友清, 贾善坡, 王凯, 谭继可. 储液容器内液体晃荡的非线性动力学分析[J]. 爆炸与冲击, 2014, 34(1): 87-92.
Li Wen-sheng, Zhao You-qing, Jia Shan-po, Wang Kai, Tan Ji-ke. Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method[J]. Explosion And Shock Waves, 2014, 34(1): 87-92.
Citation: Li Wen-sheng, Zhao You-qing, Jia Shan-po, Wang Kai, Tan Ji-ke. Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method[J]. Explosion And Shock Waves, 2014, 34(1): 87-92.

储液容器内液体晃荡的非线性动力学分析

基金项目: 国家自然科学基金项目(50978033);湖北省教育厅科学研究计划项目(Q20101301)
详细信息
    作者简介:

    李文盛(1968—), 男, 副教授, 硕士生导师

    通讯作者:

    Zhao You-qing, z_uqing@163.com

  • 中图分类号: O351.3

Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method

Funds: Supported by the National Natural Science Foundation of China (50978033)
  • 摘要: 基于非线性波动理论模型,求解储液容器内液体晃动的固有频率、模态及动力学响应问题。流体使用us-up状态方程,利用ABAQUS软件的自适应网格技术,建立储液容器液体晃动数学模型,通过施加水平简谐激励得到液体晃动的固有频率和模态,并与解析解对比,验证了该方法的准确性与可行性。然后,分析了矩形储液容器在多种激励作用下液体非线性晃动响应特性。
  • 图  1  非线性波动理论模型

    Figure  1.  The 2D model considering nonlinear wave theory

    图  2  储液系统晃动波高

    Figure  2.  Surface wave displacement for the tank-liquid system

    图  3  不同谐频下自由液面点B的波面响应

    Figure  3.  Free surface elevation of poit B for harmonic frequencies

    图  4  第1阶频率作用下液体晃动波高曲线

    Figure  4.  Variation in time of the surface wave in the first sloshing mode

    图  5  第1阶液体晃动模态图和液体晃动位移矢量图

    Figure  5.  Liquid shapes corresponding to the first sloshing mode and displacement vector plot

    图  6  不同幅值激励下液体晃动的波高曲线

    Figure  6.  Free surface elevation of liquid for different amplitudes

    图  7  EI Centro地震波和液面点AB液体晃动的波高曲线

    Figure  7.  EI Centro seismic wave and free surface displacement curve at points A and B

    表  1  液体自由晃动频率

    Table  1.   Frequencies of liquid sloshing

    n ωnum/(rad·s-1) ωana/(rad·s-1) εω/%
    1 3.20 3.20 0
    2 4.51 4.52 0.221 2
    3 5.60 5.53 1.265 8
    下载: 导出CSV
  • [1] Hasheminejad S M, Aghabeigi M. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles[J]. Applied Mathematical Modelling, 2012, 36(1): 57-71. doi: 10.1016/j.apm.2011.02.026
    [2] Xue Mi-an, Lin Peng-zhi. Numerical study of ring baffle effects on reducing violent liquid sloshing[J]. Computers & Fluids, 2011, 52: 116-129. http://www.sciencedirect.com/science/article/pii/S0045793011002921
    [3] Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid flow calculations[J]. Journal of Computational Physics, 1970, 6(2): 322-325. doi: 10.1016/0021-9991(70)90029-X
    [4] Armenio V. An improved MAC method(SIMAC)for unsteady high-reynolds free surface flows[J]. International Journal for Numerical Methods in Fluids, 1997, 24(2): 185-214. doi: 10.1002/(SICI)1097-0363(19970130)24:2<185::AID-FLD487>3.0.CO;2-Q
    [5] 包光伟, 王振强, 张天翔.火箭推进剂液体晃动关机响应的数值仿真[J].宇航学报, 2002, 23(2): 84-88. doi: 10.3321/j.issn:1000-1328.2002.02.018

    Bao Guang-wei, Wang Zhen-qiang, Zhang Tian-xiang. Numerical simulation of slosh of the propellant fuel during the period the shut-down of the rocket[J]. Jourual of Astronautics, 2002, 23(2): 84-88. doi: 10.3321/j.issn:1000-1328.2002.02.018
    [6] Jung J H, Yoon H S, Lee C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44: 79-89. doi: 10.1016/j.oceaneng.2012.01.034
    [7] 刘永涛, 马宁, 顾解忡.各种激励作用下液舱内液体晃荡的计算与分析[J].船海工程, 2009, 38(5): 7-12. doi: 10.3963/j.issn.1671-7953.2009.05.002

    Liu Yong-tao, Ma Ning, Gu Xie-chong. Calculation and analysis of liquid sloshing loads in tanks under different kinds of stimulations[J]. Ship and Ocean Engineering, 2009, 38(5): 7-12. doi: 10.3963/j.issn.1671-7953.2009.05.002
    [8] 周宏, 李俊峰, 王天舒.用ALE有限元模拟的网格更新方法[J].力学学报, 2008, 40(2): 267-272. http://www.cqvip.com/qk/91029x/200802/26789636.html

    Zhou Hong, Li Jun-feng, Wang Tian-shu. Mesh update algorithm in ale finite method within free surface flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 267-272. http://www.cqvip.com/qk/91029x/200802/26789636.html
    [9] Sygulski R. Boundary element analysis of liquid sloshing in baffled tanks[J]. Engineering Analysis with Boundary Elements, 2011, 35(8): 978-983. doi: 10.1016/j.enganabound.2011.03.001
    [10] Wang C Z, Khoo B C. Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations[J]. Ocean Engineering, 2005, 32(2): 107-133. doi: 10.1016/j.oceaneng.2004.08.001
    [11] ABAQUS/explicit user's manual: Version 6.4[M]. Rhode Island: Hibbit, Karlsson and Sorensen Inc, 2002.
    [12] ABAQUS/theory user's manual: Version 6.4[M]. Rhode Island: Hibbit, Karlsson and Sorensen Inc, 2002.
    [13] 梅强中.水波动力学[M].北京: 科学出版社, 1984.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  312
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-08
  • 修回日期:  2012-10-15
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回