Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method
-
摘要: 基于非线性波动理论模型,求解储液容器内液体晃动的固有频率、模态及动力学响应问题。流体使用us-up状态方程,利用ABAQUS软件的自适应网格技术,建立储液容器液体晃动数学模型,通过施加水平简谐激励得到液体晃动的固有频率和模态,并与解析解对比,验证了该方法的准确性与可行性。然后,分析了矩形储液容器在多种激励作用下液体非线性晃动响应特性。Abstract: Based on the nonlinear wave theory, a mathematical model was proposed by applying the adaptive meshing technique in the ABAQUS code.And in the proposed model, the linear us-up Hugoniot equation of state was used for liquid.By using the proposed model, nonlinear harmonic response simulations were performed to numerically obtain the eigenfrequencies and the modals of the liquid sloshing in the tank-liquid system subjected to horizontal excitations.And the numerical results were compared with the analytical solutions to illuminate the reliability and availability of the proposed method.Finally, the nonlinear sloshing response characteristics of a rectangular liquid storage container were analyzed under a variety of excitations.
-
Key words:
- fluid mechanics /
- modal /
- nonlinear dynamics /
- liquid sloshing /
- liquid-filled container /
- seismic response
-
表 1 液体自由晃动频率
Table 1. Frequencies of liquid sloshing
n ωnum/(rad·s-1) ωana/(rad·s-1) εω/% 1 3.20 3.20 0 2 4.51 4.52 0.221 2 3 5.60 5.53 1.265 8 -
[1] Hasheminejad S M, Aghabeigi M. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles[J]. Applied Mathematical Modelling, 2012, 36(1): 57-71. doi: 10.1016/j.apm.2011.02.026 [2] Xue Mi-an, Lin Peng-zhi. Numerical study of ring baffle effects on reducing violent liquid sloshing[J]. Computers & Fluids, 2011, 52: 116-129. http://www.sciencedirect.com/science/article/pii/S0045793011002921 [3] Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid flow calculations[J]. Journal of Computational Physics, 1970, 6(2): 322-325. doi: 10.1016/0021-9991(70)90029-X [4] Armenio V. An improved MAC method(SIMAC)for unsteady high-reynolds free surface flows[J]. International Journal for Numerical Methods in Fluids, 1997, 24(2): 185-214. doi: 10.1002/(SICI)1097-0363(19970130)24:2<185::AID-FLD487>3.0.CO;2-Q [5] 包光伟, 王振强, 张天翔.火箭推进剂液体晃动关机响应的数值仿真[J].宇航学报, 2002, 23(2): 84-88. doi: 10.3321/j.issn:1000-1328.2002.02.018Bao Guang-wei, Wang Zhen-qiang, Zhang Tian-xiang. Numerical simulation of slosh of the propellant fuel during the period the shut-down of the rocket[J]. Jourual of Astronautics, 2002, 23(2): 84-88. doi: 10.3321/j.issn:1000-1328.2002.02.018 [6] Jung J H, Yoon H S, Lee C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44: 79-89. doi: 10.1016/j.oceaneng.2012.01.034 [7] 刘永涛, 马宁, 顾解忡.各种激励作用下液舱内液体晃荡的计算与分析[J].船海工程, 2009, 38(5): 7-12. doi: 10.3963/j.issn.1671-7953.2009.05.002Liu Yong-tao, Ma Ning, Gu Xie-chong. Calculation and analysis of liquid sloshing loads in tanks under different kinds of stimulations[J]. Ship and Ocean Engineering, 2009, 38(5): 7-12. doi: 10.3963/j.issn.1671-7953.2009.05.002 [8] 周宏, 李俊峰, 王天舒.用ALE有限元模拟的网格更新方法[J].力学学报, 2008, 40(2): 267-272. http://www.cqvip.com/qk/91029x/200802/26789636.htmlZhou Hong, Li Jun-feng, Wang Tian-shu. Mesh update algorithm in ale finite method within free surface flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 267-272. http://www.cqvip.com/qk/91029x/200802/26789636.html [9] Sygulski R. Boundary element analysis of liquid sloshing in baffled tanks[J]. Engineering Analysis with Boundary Elements, 2011, 35(8): 978-983. doi: 10.1016/j.enganabound.2011.03.001 [10] Wang C Z, Khoo B C. Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations[J]. Ocean Engineering, 2005, 32(2): 107-133. doi: 10.1016/j.oceaneng.2004.08.001 [11] ABAQUS/explicit user's manual: Version 6.4[M]. Rhode Island: Hibbit, Karlsson and Sorensen Inc, 2002. [12] ABAQUS/theory user's manual: Version 6.4[M]. Rhode Island: Hibbit, Karlsson and Sorensen Inc, 2002. [13] 梅强中.水波动力学[M].北京: 科学出版社, 1984.