A new calculation method for shock factor of underwater explosion
-
摘要:
针对水中爆炸冲击因子在近场范围内的一些不足,利用水中爆炸冲击波的最大峰值压力与正相冲量的乘积推导了冲击因子的表达式。通过水中爆炸实验,得到了几种典型炸药的冲击波参数及其相似方程。利用该公式计算了水中爆炸冲击因子及其装药指数,并与基于平面波的水下爆炸冲击因子进行了对比。结果表明:冲击因子中的装药指数n=0.5不仅适合所有以TNT为基本组分的炸药,也适合于RDX、HMX基的炸药。在修正冲击波形状的基础上,由峰值压力与冲量的乘积推导的冲击因子计算公式,从冲击波的毁伤作用的角度表述了水中爆炸冲击因子的物理意义,在计算近场冲击因子时具有更高的准确性。 Abstract:Aimed to the limitations of the existent calculation methods for the shock factor of the underwater explosion in near field,a new formula for the shock factor determination was derived from the product of the shock-wave peak pressure and the positive impulse.The underwater explosion tests were carried out on several typical explosives to obtain their shock wave parameters as well as their similar equation of the shock wave peak pressure and the impulse.The underwater explosion shock factors and the charge indexes for these explosives were calculated by using the new formula.And the shock factors by the new formula were compared with those by the calculation method based on the plane-wave assumption.The results show that the exponent of the charge weight in the new shockfactor formula is 0.5not only suitable to all the TNT-based explosives,but also to the RDX-based and HMX-based compound explosives.Due to the amendment of the shock wave shape,the new calculation formula can clearly display the physical meaning of the shock factor from the damage effect of the shock waves,so it is more accurate for calculating the shock factor of the underwater explosion in near field. -
水中兵器对舰船的破坏程度是由很多因素决定的,主要包括主装药的性质和质量、爆心与舰船的距离和位置、舰船的结构和性质等。在评价水中兵器的破坏威力时,引入了冲击因子Q这样一个衡量标准[1],冲击因子的物理意义是,对于同一舰船,若冲击因子相等,则认为其水下爆炸的冲击响应近似相等。以前,使用一种基于冲击波超压的冲击因子考核潜艇结构生命力,这也是冲击因子的最早形式。由大量的实验和数值计算可发现,该形式的冲击因子不能很好地反映结构的破坏程度。随着对水下爆炸现象的进一步研究,越来越倾向于使用另一种基于平面波假定的冲击因子,这种冲击因子是从作用在结构上的冲击波能的角度定义的,远场时具有较好的效果,但该冲击因子没有考虑近场冲击波形状和能量损耗。姚熊亮等[2]利用球面波理论对水中爆炸冲击因子进行了修正,考虑了冲击波形状对垂直投射到舰船结构的冲击波能的影响。但是,水中爆炸近场的能量损耗非常严重,如48%冲击波能损耗在25个装药半径的范围内[3],而且不同种类炸药的能量释放特性也存在一定的差异。然而,传统冲击因子中描述炸药性能的TNT当量只是总化学能的一个比,并不能完全表征炸药水中爆炸的能量输出与衰减特性,尤其是水中爆炸近场。本文中,通过冲击波峰值压力和冲量相似方程的乘积推导一种适用于水中爆炸冲击波因子的计算方法,从冲击波毁伤作用角度描述该计算方法的物理意义,通过水中爆炸实验进行验证,并与传统的水下爆炸冲击因子进行对比。
1. 基于平面波的水中爆炸冲击因子
水中爆炸冲击波的毁伤作用可用冲击因子表示,基于平面波的冲击因子的表达式为[4]:
Q1=1+sinα2WnR 式中:Q1为冲击因子;W 为炸药的质量(TNT当量),kg;R为目标距爆心的距离,m;α为冲击波的入射角;n为通过实验确定的装药指数,常取n=0.5。式(1)仅适用于炸药在水底以上爆炸,如果炸药被淤泥覆盖,则相当多的炸药能量消耗在淤泥中,冲击因子不再适用。
对于潜艇目标,冲击波直接作用的结构表面即为垂直于冲击波传播方向的潜艇表面。此时,可认为α=90°,(1+sin90°)/2=1。当水面舰船遭受水下爆炸冲击时,冲击波是向各个方向传播的。其中,只有一部分冲击波能量对水面舰船起作用,这部分能量与水面舰船在垂直于冲击波方向的投影面积成正比,通常用(1+sinα)/2表示到达水面船只的冲击波方向的影响。在特定的攻击位置和方位,可把水底和水面的影响因素可看作一个常数,因此式(1)可简化为[5]:
Q1=W0.5/R 这种冲击因子实际上是基于平面波假设,并从结构遮挡冲击波能量的角度定义的,与冲击波能的关系可表述为[2]:
Q21=4πEsρeηeSe 式中:E为冲击波总能量,MJ/kg;Es为结构遮挡的冲击波能,MJ/kg;Se为结构在垂直于冲击波阵面上的投影面积,m2;ρe为炸药的质量化学能,MJ/kg;ηe为炸药化学能转化为冲击波能的比例。
由式(3)可知,当水下爆炸冲击波为平面波时,无论目标距爆心的距离大小如何,Se为常数。在爆炸远场,匀化冲击波可近似为平面波,而且冲击波能基本恒定,Q为Es的函数。在爆炸近场,冲击波能在不断衰减,冲击波的形状不能近似为平面波,此时,Q为ηe、Es的函数,在某一距离处,ηe与炸药的性能有关,Es与冲击波的形状和目标结构有关。因此,炸药的TNT当量并不能完全表征近场冲击波的特性,基于平面波的水中爆炸冲击因子具有一定局限性。而通过水中爆炸实验得到的冲击波相似方程包含了ηe的特性,反映了炸药水下爆炸的能量释放和衰减特性,下面以冲击波相似方程为基础对冲击因子进行推导。
2. 冲击因子的推导
2.1 水中爆炸相似方程
水中爆炸的相似方程为[3]:
Y=K(W1/3/R)α 式中:W 为炸药的质量,kg;R为测点距爆心的距离,m;K和α为与炸药相关的系数,K为相似常数,α为相似指数;冲击波参数Y 包括峰值压力pmax、比时间常数θ/W1/3、比冲量I/W1/3和比能流密度E/W1/3。
2.2 压力和冲量乘积推导
由水中爆炸实验得到的峰值压力的经验计算公式为:
pmax=Kp(W1/3/R)αp 冲量的计算公式为:
I+=KIW1/3(W1/3/R)αI 将峰值压力pmax和冲量I+相乘,得到:
pmaxI+=KpKIWαp/3W1/3WαI/3RαpRαI 整理得:
(pmaxI+KpKI)1/⟨αp+αI)=W(αp+αI+1)/3(αp+αI)R 可简化为[6]:
A(pmaxI+)m=WnR 式中:m=1/(αp+αI),A=(KpKI)m,n=其中m和A为冲击波参数的影响因子,n为装药指数。
通过水中爆炸实验得到的冲击波相似系数[7],计算了几种典型炸药的装药指数n,见表1。
表 1 几种典型炸药的相似系数和装药指数Table 1. Exponentsα,K,nfor various high explosives由表1可看出,在实验精度许可范围内,所有以TNT为基本组分的炸药,式(9)中装药指数n均可近似等于0.5。因此,冲击因子可表示为:
Q2=A(pmaxI+)m=W0.5R 式(10)将峰值压力pmax冲量I的毁伤作用双曲线与冲击因子的R-W关系曲线联系起来,从冲击波的毁伤作用角度表述了水中爆炸冲击因子的物理意义。
3. 实 验
3.1 样 品
TNT、RDX基和HMX基含铝炸药,全部为圆柱形压装炸药,配方组成和爆热见表2。药柱的长径比为(1.0~1.2)∶1,一端带雷管孔。Al粉为球形,直径为4.5~5.5μm。黏结剂中,w(F2603)=1.5%,w(蜡)=3%,w(石墨)=0.5%。试样质量均为25g,采用8号铜电雷管端面起爆。
表 2 炸药配方及爆热Table 2. Explosive formulation and explosion heat3.2 装 置
水池∅3.2m×2.6m,水深2.4m,池底和池壁均由8mm钢板焊接而成。入水深度1.6m,为总水深的2/3,满足冲击波和气泡的测试要求,可以消除边界效应的影响[8]。爆心与传感器的距离分别为23、32、44、58和90cm,测量的是炸药柱中心轴向的径向冲击波,实验布局如图1所示。
测试系统包括138系列ICP型压电式电气石水下激波传感器和482A型信号适配器、高低频数据记录仪。冲击波信号的采样频率为10MHz。
4. 结果与分析
4.1 装药指数
通过实验测量的冲击波参数,拟合得到了不同组分炸药的相似系数和装药指数,见表3。
由表3可知,由pmaxI+推导的冲击因子计算的理想炸药、RDX基和HMX基含铝炸药的装药指数n都非常接近于0.5,平行性也非常好。可见,基于平面波假设的冲击因子的装药指数同样适合于RDX、HMX基的含铝炸药。
表 3 不同组分炸药的相似系数和装药指数Table 3. Exponentsα,K,nfor various explosives compositions4.2 冲击因子
为了对比基于平面波的水中爆炸冲击因子与由峰值压力与冲量的乘积pmaxI+推导的冲击因子计算公式的差异,依据实验数据计算了测距23、58和90cm的冲击因子,3个距离的水中爆炸冲击波参数见表4,不同距离处的冲击因子见表5和图2。
表 4 水中爆炸冲击波峰值压力和冲量Table 4. Shock wave peak pressure and impluse of underwater explosion由表5和图2可知,在爆炸远场,Q1与Q2一致性很好,但随着测距的减小,Q1与Q2的误差逐渐增大。例如在90cm处,Q1与Q2非常接近,但在23cm处,Q1基本都大于Q2,并且随着铝含量的增加误差越来越大。这是由于,冲击因子Q1仅包含炸药质量、爆距等参数,没有包含冲击波形状、炸药的能量输出结构和冲击波衰减特性对冲击因子的影响。在近场,冲击波形状不能完全使用球面波理论近似[9],应根据炸药的形状和爆距确定。另外,铝粉含量也会影响冲击波能、气泡能的分配比例和冲击波能量的衰减,例如,对于铝含量为0%~30%的RDX基含铝炸药,冲击波能占总化学能的比例在40%~60%,药柱18倍半径处,初始冲击波能损失了约50%~60%[10]。因此,炸药的TNT当量难以全面反映水下爆炸冲击波的特性,结合冲击形状的影响,水中爆炸冲击因子可用下式计算:
表 5 不同距离处的冲击因子Table 5. The shock factors at different distancesQ2 =AB(pmaxI+)m (11)式中:B为装药形状影响因子[11]。在近场,球形装药和L/D=1的圆柱形装药,B=1.00;L/D=6的圆柱形装药,B=1.08~1.10;锥形装药,B=1.02~1.03。在远场时,B≈1.00,式(11)可简化成式(10)。
5. 结 论
(1)水中爆炸冲击因子装药指数n=0.5,不仅适合所有以TNT为基本组分的炸药,也适合于RDX、HMX基的含铝炸药。
(2)由峰值压力与冲量的乘积pmaxI+推导的冲击因子计算公式,从冲击波的毁伤作用的角度表述了水中爆炸冲击因子的物理意义,结合冲击形状对冲击波能的影响,计算近场冲击因子时具有更高的准确性。
-
表 1 几种典型炸药的相似系数和装药指数
Table 1. Exponentsα,K,nfor various high explosives
表 2 炸药配方及爆热
Table 2. Explosive formulation and explosion heat
表 3 不同组分炸药的相似系数和装药指数
Table 3. Exponentsα,K,nfor various explosives compositions
表 4 水中爆炸冲击波峰值压力和冲量
Table 4. Shock wave peak pressure and impluse of underwater explosion
表 5 不同距离处的冲击因子
Table 5. The shock factors at different distances
-
[1] Liang Cho-chung, Tai Yuh-shiou. Shock responses of a surface ship subjected to noncontact underwater explosions[J]. Ocean Engineering, 2006, 33: 748-772. doi: 10.1016/j.oceaneng.2005.03.011 [2] 姚熊亮, 曹宇, 郭君, 等. 一种用于水面舰船的水下爆炸冲击因子[J]. 哈尔滨工程大学学报, 2007, 28(5): 501-509. doi: 10.3969/j.issn.1006-7043.2007.05.004Yao Xiong-liang, Cao Yu, Guo Jun, et al. Research on the response of warships to impulsive factor of underwater explosions[J]. Journal of Harbin Engineering University, 2007, 28(5): 501-509. doi: 10.3969/j.issn.1006-7043.2007.05.004 [3] 库尔 P. 水下爆炸[M]. 北京: 国防工业出版社, 1960: 202-205. [4] Reid W D. The response of surface ships to underwater explosions[R]. Canberra, Australia: Defense Science and Technology Organization, 1996. [5] O’Hara G J, Cunniff P F. Scaling for shock response of equipment in different submarines[J]. Shock and Vibra-tion, 1993, 1(2): 161-170. doi: 10.1155/1993/298290 [6] Held M. Similarities of shock wave damage in air and in water[J]. Propellants, Explosives, Pyrotechnics, 1990, 15(4): 149-156. doi: 10.1002/prep.19900150406 [7] Mellor M. Blasting and blast effects in cold regions: Underwater explosions[R]. Hanover, New Hampshire: Cold Regions Research and Engineering Laboratory, 1986. [8] 王建灵, 赵东奎, 郭炜, 等. 水下爆炸能量测试中炸药入水深度的确定[J]. 火炸药学报, 2002, 25(2): 30-31;44. doi: 10.3969/j.issn.1007-7812.2002.02.012Wang Jian-ling, Zhao Dong-kui, Guo Wei, et al. Determination of the reasonable depth of explosives in water to measure underwater explosion energy[J]. Chinese Journal of Explosives & Propellants, 2002, 25(2): 30-31;44. doi: 10.3969/j.issn.1007-7812.2002.02.012 [9] 赵继波, 谭多望, 李金河, 等. 柱形装药水中爆炸近场径向压力测试初探[C]∥第五届全国爆炸力学实验技术会议论文集. 西安: 中国力学学会爆炸力学实验技术专业组, 2006: 89-92. [10] 胡宏伟, 王建灵, 徐洪涛, 等. RDX基含铝炸药水中爆炸近场冲击波特性[J]. 火炸药学报, 2009, 32(2): 1-5. doi: 10.3969/j.issn.1007-7812.2009.02.001Hu Hong-wei, Wang Jian-ling, Xu Hong-tao, et al. Underwater shockwave characteristics of RDX-based aluminized explosives in near-field range[J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 1-5. doi: 10.3969/j.issn.1007-7812.2009.02.001 [11] Bjarnholt G. Suggestions on standards for measurement and data evaluation in the underwater explosion test[J]. Propellants, Explosives, Pyrotechnics, 1980(2/3): 67-74. -