激波作用下含缺陷固体火箭装药的流固耦合数值模拟

郭攀 武文华 刘君 吴志刚

郭攀, 武文华, 刘君, 吴志刚. 激波作用下含缺陷固体火箭装药的流固耦合数值模拟[J]. 爆炸与冲击, 2014, 34(1): 93-98.
引用本文: 郭攀, 武文华, 刘君, 吴志刚. 激波作用下含缺陷固体火箭装药的流固耦合数值模拟[J]. 爆炸与冲击, 2014, 34(1): 93-98.
Guo Pan, Wu Wen-hua, Liu Jun, Wu Zhi-gang. Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves[J]. Explosion And Shock Waves, 2014, 34(1): 93-98.
Citation: Guo Pan, Wu Wen-hua, Liu Jun, Wu Zhi-gang. Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves[J]. Explosion And Shock Waves, 2014, 34(1): 93-98.

激波作用下含缺陷固体火箭装药的流固耦合数值模拟

基金项目: 国家自然科学基金创新研究群体项目(50921001);国家重点基础研究计划(973计划)项目(2011CB013705);国家科技重大专项(2011ZX05026-002-02)
详细信息
    作者简介:

    郭攀(1982—), 男, 博士研究生

    通讯作者:

    Wu Wen-hua, xlyuhua@dlut.edu.cn

  • 中图分类号: O354.5

Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves

Funds: Supported by the National Natural Sience Foundation of China (50921001); the National Basic Program of China (973 Program)(2011CB013705); the National S & T Major Projct (2011ZX05026-002-02)
  • 摘要: 采用弱耦合方法对激波作用下固体火箭发动机含缺陷药柱的流固耦合相互作用进行数值模拟。其中非定常流场采用基于任意拉格朗日-欧拉坐标系下的二维可压缩Euler方程进行描述,并采用格心格式的有限体积方法对方程进行离散求解;对激波冲击作用下含装药裂纹的固体位移场采用时域间断Galerkin扩展有限元法进行数值模拟,并对裂纹尖端动态应力强度因子进行计算。结果表明:激波在固体火箭发动机内装药裂缝传播过程中具有反射、绕射等现象,表现出高度非定常非线性的特点;同时流固耦合相互作用使得裂纹尖端位移场以及应力强度因子表现出振荡效应。
  • 图  1  网络模型划分

    Figure  1.  Model and mesh

    图  2  初始时刻激波流线

    Figure  2.  Shock wave at initial time

    图  3  含裂纹的固体模型及网格划分

    Figure  3.  Mesh of solid with crack

    图  4  监控点压力曲线

    Figure  4.  Pressure of monitoring points

    图  5  激波扫裂纹的密度等位线

    Figure  5.  Density contour of shock wave

    图  6  P1y方向位移曲线

    Figure  6.  Displacement curve along y axis at P1

    图  7  应力强度因子计算比较

    Figure  7.  Contrast of the stress intensity factors

  • [1] 何国强.装药缺陷对固体发动机性能影响研究[D].西安: 西北工业大学, 2001.
    [2] Liu C T. Investigation of the effect of predamage on the crack growth behavior in a particulate composite material[R]. La Jolla, CA, USA: American Institute of Aeronautics and Astronautics, 1993.
    [3] Liu C T. Crack growth behavior in a composite propellant with strain gradients: PartⅡ[J]. Journal of Spacecraft, 1990, 27(6): 647-652. doi: 10.2514/3.26194
    [4] 职世君, 孙冰, 张建伟.固体推进剂复合型裂纹扩展数值计算[J].固体火箭技术, 2011, 34(1): 28-31. doi: 10.3969/j.issn.1006-2793.2011.01.007

    Zhi Shi-jun, Sun Bing, Zhang Jian-wei. Numerical computation of mixed mode crack propagation in solid propellant[J]. Journal of Solid Rocket Technology, 2011, 34(1): 28-31. doi: 10.3969/j.issn.1006-2793.2011.01.007
    [5] 韩波, 周长省, 陈雄.固体推进剂裂纹内点火过程流固耦合数值仿真[J].固体火箭技术, 2011, 34(2): 180-183. doi: 10.3969/j.issn.1006-2793.2011.02.010

    Han Bo, Zhou Chang-sheng, Chen Xiong. Numerical simulation of fluid-solid coupling in propellant crack during ignition[J]. Journal of Solid Rocket Technology, 2011, 34(2): 180-183. doi: 10.3969/j.issn.1006-2793.2011.02.010
    [6] 徐春光, 刘君.激波在狭缝中绕射过程研究[J].固体火箭技术, 2003, 26(3): 39-41. doi: 10.3969/j.issn.1006-2793.2003.03.012

    Xu Chun-guang, Liu Jun. Study of shock wave diffraction over a crack[J]. Journal of Solid Rocket Technology, 2003, 26(3): 39-41. doi: 10.3969/j.issn.1006-2793.2003.03.012
    [7] 刘君, 张为华, 郭正.点火发动机形成的受限喷流流场数值模拟[J].固体火箭技术, 2000, 23(1): 6-8. doi: 10.3969/j.issn.1006-2793.2000.01.002

    Liu Jun, Zhang Wei-hua, Guo Zheng. Numerical simulation of limited jets produced by ignitors[J]. Journal of Solid Rocket Technology, 2000, 23(1): 6-8. doi: 10.3969/j.issn.1006-2793.2000.01.002
    [8] 郭攀, 刘君, 武文华.爆炸冲击载荷作用下流固耦合数值模拟[J].力学学报, 2013, 45(2): 283-287.

    Guo Pan, Liu Jun, Wu Wen-hua. Numrical modeling for fluid-structure interaction under blast and impact loading response[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 283-287.
    [9] Felippa C A, Park K, Farhat C. Partioned analysis of coupled mechanical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 3247-3270. doi: 10.1016/S0045-7825(00)00391-1
    [10] Belytschko T, Chen H, Xu J, et al. Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment[J]. International Journal for Numerical Methods in Engineering, 2003, 58(12): 1873-1905. doi: 10.1002/nme.941
    [11] Belytschko T, Chen H. Singular enrichment finite element method for elastodynamic crack propagation[J]. International Journal of Computational Methods, 2004, 1(1): 1-15. doi: 10.1142/S0219876204000095
    [12] Li X, Yao D, Lewis R W. A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media[J]. International Journal for Numerical Methods in Engineering, 2003, 57(12): 1775-1800. doi: 10.1002/nme.741
    [13] Wu W, Li X. Application of the time discontinuous Galerkin finite element method to heat wave simulation[J]. International Journal of Heat and Mass Transfer, 2006, 49: 1679-1684. doi: 10.1016/j.ijheatmasstransfer.2005.10.025
  • 加载中
图(7)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  246
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-14
  • 修回日期:  2012-10-10
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回