黏塑性本构计算的稳定性分析

刘明涛 李永池 胡秀章 章杰

刘明涛, 李永池, 胡秀章, 章杰. 黏塑性本构计算的稳定性分析[J]. 爆炸与冲击, 2017, 37(5): 969-975. doi: 10.11883/1001-1455(2017)05-0969-07
引用本文: 刘明涛, 李永池, 胡秀章, 章杰. 黏塑性本构计算的稳定性分析[J]. 爆炸与冲击, 2017, 37(5): 969-975. doi: 10.11883/1001-1455(2017)05-0969-07
Liu Mingtao, Li Yongchi, Hu Xiuzhang, Zhang Jie. The numerical stability of the constitutive calculation on viscoplastic materials[J]. Explosion And Shock Waves, 2017, 37(5): 969-975. doi: 10.11883/1001-1455(2017)05-0969-07
Citation: Liu Mingtao, Li Yongchi, Hu Xiuzhang, Zhang Jie. The numerical stability of the constitutive calculation on viscoplastic materials[J]. Explosion And Shock Waves, 2017, 37(5): 969-975. doi: 10.11883/1001-1455(2017)05-0969-07

黏塑性本构计算的稳定性分析

doi: 10.11883/1001-1455(2017)05-0969-07
基金项目: 

国家自然科学基金项目 11602250

中国工程物理研究院流体物理研究所发展基金项目 SFZ201401(04)02

详细信息
    作者简介:

    刘明涛(1986—),男,博士,副研究员,liumingtao@caep.cn

  • 中图分类号: O345

The numerical stability of the constitutive calculation on viscoplastic materials

  • 摘要: 提出本构方程计算方法的稳定性问题,针对黏塑性本构计算的显式精确算法的稳定性进行分析,发现该算法并非无条件稳定,使用小扰动方法给出了其计算稳定的必要条件,稳定性条件对数值计算中的时间步长提出限制要求。通过有限元算例验证了分析的正确性,计算结果也表明理论推导得到的稳定性公式能够准确预测满足计算稳定性条件要求的最大时间步长与各参数之间关系。
  • 图  1  单元计算模型算例

    Figure  1.  Computational model of a single square element

    图  2  步长dt =0.3×10-7 s时显式精确算法计算结果

    Figure  2.  Computational results of explicit precise algorithm with time step dt =0.3×10-7 s

    图  3  步长dt =1.0×10-7 s时显式精确算法计算结果

    Figure  3.  Computational results of explicit precise algorithm with time step dt =1.0×10-7 s

    图  4  步长dt =1.5×10-7 s时显式精确算法计算结果

    Figure  4.  Computational results of explicit precise algorithm with time step dt =0.3×10-7 s

    图  5  步长dt =1.5×10-7 s时半径回归法计算结果

    Figure  5.  Computational results of radial return algorithm with time step dt =1.0×10-7 s

    图  6  最大时间步长与应变率敏感因子关系

    Figure  6.  Relationship between the maximum time step and the strain-rate sensitivity coefficient

    图  7  最大时间步长与准静态条件下屈服应力关系

    Figure  7.  Relationship between the maximum time step and the yield strength under quasi-static condition

    图  8  最大时间步长与剪切模量关系

    Figure  8.  Relationship between the maximum time step and the shear modulus

    图  9  最大时间步长与塑性应变率关系

    Figure  9.  Relationship between the maximum time step and the plastic strain rate

  • [1] Drucker D C. A more fundamental approach to plastic stress-strain relations[M]. Division of Applied Mathematics, Brown University, 1951.
    [2] Drucker D C, Prager W, Greenberg H J. Extended limit design theorems for continuous media[J]. Quarterly of Applied Mathematics, 1952, 9(4):381-389. doi: 10.1090/qam/1952-09-04
    [3] Palmer A C, Maier G, Drucker D C. Convexity of yield surfaces and normality relations for unstable materials or structural elements[J]. Journal of Applied Mechanics, 1967, 34(2):464-470. doi: 10.1115/1.3607706
    [4] 李永池, 唐之景, 胡秀章.关于Drucker公设和塑性本构关系的进一步研究[J].中国科学技术大学学报, 1988, 18(3):339-345. http://www.cnki.com.cn/Article/CJFDTotal-ZKJD198803006.htm

    Li Yongchi, Tang Zhijing, Hu Xiuzhang. Further study on the drucker postulate and plastic constitutive relations[J]. Journal of China University of Science and Technology, 1988, 18(3):339-345. http://www.cnki.com.cn/Article/CJFDTotal-ZKJD198803006.htm
    [5] Hageman L J, Walsh J M. Help, a multi-material Eulerian program for compressible fluid and elastic-plastic flows in two space dimensions and time. Volume 1: AD0726459[R]. Systems Science and Software, La Jolla, California, 1971.
    [6] Autodyn theory manual revision 4.3[R]. Century Dynamics Limited, Management Consulting Services, Horsham, United Kingdom, 2000.
    [7] Hallquist J O. LS-DYNA theory manual[M]. Livermore: Livermore Software Technology Corporation, 2006.
    [8] 李永池, 谭福利, 姚磊, 等.含损伤材料的热粘塑性本构关系及其应用[J].爆炸与冲击, 2004, 24(4):289-298. doi: 10.3321/j.issn:1001-1455.2004.04.001

    Li Yongchi, Tan Fuli, Yao Lei, et al. Thermo-viscoplastic constitutive relation of damaged materials with application[J]. Explosion and Shock Waves, 2004, 24(4):289-298. doi: 10.3321/j.issn:1001-1455.2004.04.001
  • 加载中
图(9)
计量
  • 文章访问数:  4113
  • HTML全文浏览量:  1247
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-10-08
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回