基于PDV的JOB-9003炸药爆轰反应区测量

覃锦程 裴红波 黄文斌 张旭 郑贤旭 赵锋

覃锦程, 裴红波, 黄文斌, 张旭, 郑贤旭, 赵锋. 基于PDV的JOB-9003炸药爆轰反应区测量[J]. 爆炸与冲击, 2019, 39(4): 041404. doi: 10.11883/bzycj-2018-0101
引用本文: 覃锦程, 裴红波, 黄文斌, 张旭, 郑贤旭, 赵锋. 基于PDV的JOB-9003炸药爆轰反应区测量[J]. 爆炸与冲击, 2019, 39(4): 041404. doi: 10.11883/bzycj-2018-0101
QIN Jincheng, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu, ZHAO Feng. Measuring the detonation reaction zone structure ofJOB-9003 explosive using PDV[J]. Explosion And Shock Waves, 2019, 39(4): 041404. doi: 10.11883/bzycj-2018-0101
Citation: QIN Jincheng, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu, ZHAO Feng. Measuring the detonation reaction zone structure ofJOB-9003 explosive using PDV[J]. Explosion And Shock Waves, 2019, 39(4): 041404. doi: 10.11883/bzycj-2018-0101

基于PDV的JOB-9003炸药爆轰反应区测量

doi: 10.11883/bzycj-2018-0101
基金项目: 科学挑战专题(TZ2018001);NSAF联合基金(U1630113);国防科工局技术基础项目(JSZL2015212C001)
详细信息
    作者简介:

    覃锦程(1993- ),男,硕士研究生,jc_qin@163.com

    通讯作者:

    裴红波(1987- ),男,博士,助理研究员,hongbo2751@sina.com

  • 中图分类号: O381

Measuring the detonation reaction zone structure ofJOB-9003 explosive using PDV

  • 摘要:

    炸药的反应区数据对爆轰过程的精密建模具有重要意义,为了得到JOB-9003炸药的反应区信息,采用光子多普勒测速仪(PDV)对JOB-9003炸药的爆轰反应区进行了实验研究。实验中利用火炮发射高速蓝宝石飞片冲击起爆被测炸药,在炸药后表面安装镀膜氟化锂(LiF)窗口测量炸药一维稳态爆轰时的界面粒子速度,测试过程的时间分辨率小于1 ns,测速相对不确定度小于2%。通过读取界面粒子速度时程曲线的拐点来确定CJ点,根据阻抗匹配公式计算炸药的CJ压力。研究结果表明,JOB-9003炸药界面粒子速度时程曲线上存在较为明显的拐点,JOB-9003炸药的化学反应时间为(11±2)ns,对应的化学反应区宽度为(0.075±0.014)mm,JOB-9003炸药的CJ爆压为(35.6±0.9)GPa,冯诺依曼(Von Neumann)峰处的压力为(47.9±1.2)GPa。

  • 图  1  爆轰反应区结构示意图

    Figure  1.  Schematic representation of the detonation reaction zone profile

    图  2  测试系统组成图

    Figure  2.  Experimental set-up

    图  3  条纹法计算速度示意图

    Figure  3.  Schematic of velocity calculation with fringe method

    图  4  窗口傅里叶变换得到的速度谱图(探头:shot 1-P1)

    Figure  4.  Velocity spectrogram calculated with Fourier transformation (probe: shot 1-P1)

    图  5  界面粒子速度历程图

    Figure  5.  Particle velocity histories at LiF window interface

    表  1  实验测得的JOB-9003爆轰反应区参数

    Table  1.   Reaction zone parameter of JOB-9003 measured from experiments

    探头 uVN/(m·s−1) uCJ/(m·s−1) PVN/GPa PCJ/GPa τ/ns
    shot 1-P1 2 519 1 943 48.8 35.6 11
    shot 1-P2 2 495 1 934 48.2 35.4 11
    shot 1-P3 1 940 35.5 11
    shot 2-P1 2 477 1 948 47.8 35.7 11
    shot 2-P2 2 513 1 945 48.7 35.7 11
    shot 2-P3 2 402 1 932 46.0 35.4 11
    平均 2 481±50 1 940±39 47.9±1.2 35.6±0.9 11±2
     注:(1)shot 1-P1表示第1发实验中的第1个探头。(2)平均值中不确定度主要来自于界面粒子速度测试。
    下载: 导出CSV
  • [1] DUFF R E, HOUSTON E. Measurement of the Chapman-Jouguet pressure and reaction zone length in a detonating high explosive [J]. Journal of Chemical Physics, 1955, 23(7): 1268–1273. DOI: 10.1063/1.1742255.
    [2] 张宝坪, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2001: 151−153.
    [3] TASKER D G, LEE R J. The measurement of electrical conductivity in the detonating condensed explosives [C] // Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 123−126.
    [4] LEE R J, GUSTAVSON P K. Electrical conductivity as a real time probe of secondary combustion of solid-fuel additives in detonating explosives [C] // Shock Compression of Condensed Matter 2003. USA: American Institute of Physics, 2004: 1273−1276.
    [5] 赵同虎, 张新彦, 李斌, 等. 用光电法研究钝感炸药JB-9014反应区结构 [J]. 高压物理学报, 2002, 16(2): 111–119. DOI: 10.11858/gywlxb.2002.02.005

    ZHAO Tonghu, ZHANG Xinyan, LI Bin, et al. Detonation reaction zone structure of JB-9014 [J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 111–119. DOI: 10.11858/gywlxb.2002.02.005
    [6] LOBOIKO B L, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733.
    [7] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives [J]. Journal of Chemical Physics, 1984, 80(8): 3831–3844. DOI: 10.1063/1.447164.
    [8] SEITZ W L, STACY H L, ENGELKE R, et al. Detonation reaction-zone structure of PBX-9502 [C] // Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 675−682.
    [9] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Detonation wave profiles in HMX based explosives [J]. Office of Scientific & Technical Information Technical Reports, 1998, 429(429): 739–742. DOI: 10.1063/1.55674.
    [10] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Progress in measuring detonation wave profiles in PBX9501 [C] // 11th International Detonation Symposium. USA: Office of Naval Research, 1998: 821−827.
    [11] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry (PDV)[C] // Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253−256.
    [12] BOUYER V, DOUCET M, DECARIS L. Experimental measurements of the detonation wave profile in a TATB based explosive [C] // EPJ Web of Conference. France: EDP Science, 2010: 378−384. DOI: http://dx.doi.org/10.1051/epjconf/20101000030
    [13] BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives [C] // Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209−212. DOI: 10.1063/1.3686256
    [14] BOUYER V, SHEFFIELD S A, DATTELBAUM D M, et al. Experimental measurements of the chemical reaction zone of detonating liquid explosives [C] // Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 177−180. DOI: 10.1063/1.3295096.
    [15] 董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989: 126; 130; 301.
    [16] 裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379

    PEI Hongbo, HUANG Wenbin, QIN Jincheng, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379
    [17] STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques [J]. Review of Scientific Instruments, 2006, 77(8): 083108. DOI: 10.1063/1.2336749.
    [18] 项红亮, 王建, 毕重连, 等. 光子多普勒速度测量系统的数据处理方法 [J]. 光学与光电技术, 2012, 10(2): 52–56

    XIANG Hongliang, WANG Jian, BI Chonglian, et al. Data processing of photonic Doppler velocimetry system [J]. Optics & Optoelectronic Technology, 2012, 10(2): 52–56
    [19] LIU S, WANG D, LI T, et al. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform [J]. Review of Scientific Instruments, 2011, 82(2): 593–599. DOI: 10.1063/1.3534011.
    [20] 赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010

    ZHAO Wanguang, ZHOU Xianming, LI Jiabo, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010
    [21] JENSEN B J, HOLTKAMP D B, RIGG P A, et al. Accuracy limits and window corrections for photon doppler velocimetry [J]. Journal of Applied Physics, 2007, 101(1): 523–454. DOI: 10.1063/1.2407290.
    [22] FRITZ J N, HIXSON R S, SHAW M S, et al. Overdriven-detonation and sound-speed measurements in PBX-9501 and the " thermodynamic”Chapman-Jouguet pressure [J]. Journal of Applied Physics, 1996, 80(11): 6129–6141. DOI: 10.1063/1.363681.
    [23] MADER C L. Numerical modeling of detonation [M]. Berkely, California: University of California Press, 1979: 69−70.
    [24] MENIKOFF R. Detonation waves in PBX 9501 [J]. Combustion Theory & Modelling, 2006, 10(6): 1003–1021. DOI: 10.1080/13647830600851754.
    [25] TARVER C M. Detonation reaction zones in condensed explosives [C] // APS Topical Conference on Sccm. American Institute of Physics, 2006: 1026-1029. DOI: 10.1063/1.2263497
    [26] SHEFFIELD S A, GUSTAVSEN R L, ALCON R R, et al. High pressure Hugoniot and reaction rate measurements in PBX9501 [C] // AIP Conference Proceedings, 2004, 706(1): 1033-1036. DOI: 10.1063/1.1780414
    [27] DICK J J, MARTINEZ A R, HIXSON R S. Plane impact response of PBX 9501 and its components below 2 GPa: LA-13426-MS [R]. USA: Los Alamos National Laboratory Report, 1998.
    [28] Marsh S P. LASL Shock Hugoniot Data [M]. Berkely: University of California press, 1980: 83.
    [29] BAER M R, ROOT S, DATTELBAUM D, et al. Shockless compression studies of HMX-based explosives [C] // American Institute of Physics Conference Series. American Institute of Physics, 2009: 699−702. DOI: 10.1063/1.3295235
    [30] GIBBS T R. LLNL handbook of high explosives [M]. Berkely: University of California press, 1980: 259−262.
    [31] 池家春. 非均匀炸药未反应冲击雨贡纽关系的压力对比测量技术 [C] // 第二次全国爆轰学术会议论文集(3). 南京, 1983: 134−140.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  5077
  • HTML全文浏览量:  2150
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-06-22
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回