基于广义波阻抗梯度飞片的准等熵压缩技术

陈子博 谢普初 刘东升 陈伟 王永刚

陈子博, 谢普初, 刘东升, 陈伟, 王永刚. 基于广义波阻抗梯度飞片的准等熵压缩技术[J]. 爆炸与冲击, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407
引用本文: 陈子博, 谢普初, 刘东升, 陈伟, 王永刚. 基于广义波阻抗梯度飞片的准等熵压缩技术[J]. 爆炸与冲击, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407
CHEN Zibo, XIE Puchu, LIU Dongsheng, CHEN Wei, WANG Yonggang. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer[J]. Explosion And Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407
Citation: CHEN Zibo, XIE Puchu, LIU Dongsheng, CHEN Wei, WANG Yonggang. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer[J]. Explosion And Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407

基于广义波阻抗梯度飞片的准等熵压缩技术

doi: 10.11883/bzycj-2018-0407
基金项目: 科学挑战专题(TZ2018001)
详细信息
    作者简介:

    陈子博(1992- ),男,硕士研究生,1142415651@qq.com

    通讯作者:

    王永刚(1976- ),男,博士,教授,wangyonggang@nbu.edu.cn

  • 中图分类号: O347.3

Quasi-isentropic compression technique based on generalized wave impedance gradient flyer

  • 摘要:

    基于变截面杆的波传播特性,设计了一种“针床型”广义波阻抗梯度飞片,即在圆薄片基座上密排叠加许多犹如针尖的小正四棱锥。采用LS-DYNA软件中SPH算法对广义波阻抗梯度飞片高速击靶过程进行了数值计算,结果显示:在飞片击靶过程中,每一个小正四棱锥台可以看作“点”式加载脉冲源,产生一系列具有缓慢上升前沿的近似球面波,球面波相互叠加得到具有缓慢上升前沿的平面加载波形,从而实现对靶板准等熵压缩加载。在数值计算中详细讨论了飞片击靶速度、飞片几何特征参数对准等熵压缩加载特性的影响规律,为广义波阻抗梯度飞片的设计与应用提供指导。基于数值计算结果,采用激光选区烧结金属增材制造技术,制备了一种广义阻抗梯度飞片样品,在一级气炮上进行击靶实验,实测了靶板自由面速度时程曲线,波形呈现了准等熵压缩加载特性,并与计算结果进行了对比,两者基本一致,从而验证了广义波阻抗梯度飞片结构设计的可行性以及数值计算结果的可靠性。

  • 图  1  “针床形”广义波阻抗梯度飞片几何结构示意图

    Figure  1.  Schematic diagram of the “needle-bed” generalized wave impedance gradient flyer

    图  2  波阻抗梯度飞片气炮实验的SPH单胞计算模型

    Figure  2.  SPH cell simulation model of impedance gradient flyer in gas gun experiments

    图  3  靶板内不同时刻的应力波传播云图

    Figure  3.  Stress wave propagation contours in the specimen at different times

    图  4  不同时刻飞片和靶板的塑性应变云图

    Figure  4.  Plastic strain contours in the flyer and specimen at different times

    图  5  不同撞击速度下靶板自由面速度时程曲线

    Figure  5.  Free surface velocity profiles of specimen at different impact velocities

    图  6  不同撞击速度下飞片变形的最终形态

    Figure  6.  Final deformation of the flyer at different impact velocities

    图  7  压缩波上升沿时间随着撞击速度的变化曲线

    Figure  7.  Compression wave front time vs. impact velocities

    图  8  自由面速度峰值与撞击速度比值随着撞击速度的变化曲线

    Figure  8.  Ratios between peak velocity and impact velocity vs. impact velocity

    图  9  不同四棱锥台高条件下靶板自由面速度时程曲线对比

    Figure  9.  Comparison of the free surface velocity profiles for the specimen with different heights of the pyramid

    图  10  四棱锥台的锥角定义示意图

    Figure  10.  Schematic diagram of the cone angle of the pyramid

    图  11  不同锥角条件下靶板自由面速度时程曲线对比

    Figure  11.  Comparison of free surface velocity profiles for the pyramid specimen with different cone angles

    图  12  压缩波上升沿时间和峰值速度随着正四棱锥台锥角的变化曲线

    Figure  12.  Compression wave front time and peak velocity vs. the cone angle of the pyramid

    图  13  不同上底边宽度条件下靶板自由面速度时程曲线对比

    Figure  13.  Comparison of free surface velocity profiles for the specimen with different widths of the upper edge

    图  14  广义波阻抗梯度飞片的3D几何模型和样品

    Figure  14.  3D model and product of generalized wave impedance gradient flyer

    图  15  轻气炮实验装置示意图

    Figure  15.  Schematic of the gas gun device

    图  16  实验与数值计算得到靶板自由面速度时程曲线对比

    Figure  16.  Experimental and numerical free surface velocities of the target

    表  1  飞片和靶板材料本构和状态方程参数

    Table  1.   Flyer and target material parameters

    E/GPa$\nu$ρ/(kg·m−3)A/MPaB/MPancm$\mathop {\dot \varepsilon }\nolimits_0 $Tm/KT0/K
    2100.37 8307925100.260.0141.0311 800293
    下载: 导出CSV
  • [1] LORENZ K T, EDWARDS M J, JANKOWSKI A F, et al. High pressure, quasi-isentropic compression experiments on the Omega laser [J]. High Energy Density Physics, 2006, 2(3): 113–125. DOI: 10.1016/j.hedp.2006.08.001.
    [2] CHHABILADS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher-capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17(1−3): 183–194. DOI: 10.1016/0734-743X(95)99845-I.
    [3] THORNHILL T F, CHHABILDAS L C, REINHART W D, et al. Particle launch 19km/s for micro-meteoroid simulation using enhance three-stage light gas gun hypervelocity launcher techniques [J]. International Journal of Impact Engineering, 2006, 33(1−12): 799–811. DOI: 10.1016/j.ijimpeng.2006.09.015.
    [4] MARTIN L P, PATTERSON J R, ORLIKOWSKI D, et al. Application of tape-cast graded impedance impactors for light-gas gun experiments [J]. Journal of Applied Physics, 2007, 102(2): 023507. DOI: 10.1063/1.2756058.
    [5] YEP S J, BELOF J L, ORLIKOWSKI D A, et al. Fabrication and application of high impedance graded density impactors in light gas gun experiments [J]. Review of Scientific Instruments, 2013, 84(10): 103909. DOI: 10.1063/1.4826565.
    [6] 柏劲松, 李蕾. 实现应变率为105~106 s−1的阻抗梯度飞片复杂加载波形计算分析 [J]. 爆炸与冲击, 2015, 35(6): 792–798. DOI: 10.11883/1001-1455(2015)06-0792-07

    BAI Jinsong, LI Lei. Computational analysis of complex loading waveforms of impedance gradient flyers with strain rate of 105—106 s−1 [J]. Explosion and Shock Waves, 2015, 35(6): 792–798. DOI: 10.11883/1001-1455(2015)06-0792-07
    [7] 沈强, 张联盟, 王传彬, 等. 梯度飞片材料的波阻抗分布设计与优化 [J]. 物理学报, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020

    SHEN Qiang, ZHANG Lianmeng, WANG Chuanbin, et al. Design and optimization of wave impedance distribution of gradient flyer materials [J]. Acta Physica Sinica, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020
    [8] LUO G Q, BAI J S, TAN H, et al. Characterizations of Mg-W system graded-density impactors for complex loading experiments [J]. Metallurgical and Materials Transactions A, 2010, 41(9): 2389–2395. DOI: 10.1007/s11661-010-0309-0.
    [9] TAYLOR P, Goff M, HAZELL P J, et al. Ramp wave generation using graded areal density ceramic flyers and the plate impact technique [J]. Journal of Physics: Conference Series, 2014, 500: 142016. DOI: 10.1088/1742-6596/50/14/142016.
    [10] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1–4. DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001

    LU Bingheng, LI Dichen. Development of Additive Manufacturing (3D Printing) Technology [J]. Mechanical Manufacturing and Automation, 2013, 42(4): 1–4. DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001
    [11] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术 [J]. 材料工程, 2016, 44(2): 122–128. DOI: 10.11868/j.issn.1001-4381.2016.02.019

    ZHANG Xuejun, TANG Sizhen, YAN Hengyue, et al. Research status and key technologies of 3D printing technology [J]. Materials Engineering, 2016, 44(2): 122–128. DOI: 10.11868/j.issn.1001-4381.2016.02.019
    [12] 王礼立, 胡时胜. 锥杆中应力波传播的放大特性 [J]. 宁波大学学报, 1988, 2(1): 78–87

    WANG Lili, HU Shisheng. Amplification characteristics of stress wave propagation in cones [J]. Journal of Ningbo University, 1988, 2(1): 78–87
    [13] 罗鑫, 白二雷. 变截面杆共轴撞击数值分析及其应用前景 [J]. 高压物理学报, 2012, 26(6): 715–720. DOI: 10.11858/gywlxb.2012.06.018

    LUO Xin, BAI Erlei. Numerical analysis of the common-axis impact of variable-section bar and its application prospect [J]. Journal of High Pressure Physics, 2012, 26(6): 715–720. DOI: 10.11858/gywlxb.2012.06.018
    [14] 陶俊林, 张方举. 变截面弹丸在分离式Hopkinson压杆中的应用 [J]. 实验力学, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025

    TAO Junlin, ZHANG Fangju. Application of variable section projectile in separate Hopkinson pressure bar [J]. Experimental Mechanics, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  4954
  • HTML全文浏览量:  1847
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 修回日期:  2018-12-27
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回