Quasi-isentropic compression technique based on generalized wave impedance gradient flyer
-
摘要:
基于变截面杆的波传播特性,设计了一种“针床型”广义波阻抗梯度飞片,即在圆薄片基座上密排叠加许多犹如针尖的小正四棱锥。采用LS-DYNA软件中SPH算法对广义波阻抗梯度飞片高速击靶过程进行了数值计算,结果显示:在飞片击靶过程中,每一个小正四棱锥台可以看作“点”式加载脉冲源,产生一系列具有缓慢上升前沿的近似球面波,球面波相互叠加得到具有缓慢上升前沿的平面加载波形,从而实现对靶板准等熵压缩加载。在数值计算中详细讨论了飞片击靶速度、飞片几何特征参数对准等熵压缩加载特性的影响规律,为广义波阻抗梯度飞片的设计与应用提供指导。基于数值计算结果,采用激光选区烧结金属增材制造技术,制备了一种广义阻抗梯度飞片样品,在一级气炮上进行击靶实验,实测了靶板自由面速度时程曲线,波形呈现了准等熵压缩加载特性,并与计算结果进行了对比,两者基本一致,从而验证了广义波阻抗梯度飞片结构设计的可行性以及数值计算结果的可靠性。
Abstract:Based on the wave propagation characteristics of variable cross-section rods, a generalized wave impedance gradient flyer, termed the " bed of nails” was designed. The process of the generalized wave impedance gradient flyer impacting the sample was simulated by using the SPH algorithm of the LS-DYNA software. The wave profiles display a smooth increase of velocity, with no indication of a shock jump. The physical mechanism of the quasi-isentropic compression generation is attributed to the interaction from a series of approximately spherical waves with slowly rising front. The influences of impact velocity and geometric parameters of the flyer on the ramp wave loading characteristics were discussed in detail, which provide some useful information for the design and application of the generalized wave impedance gradient flyer. Selective Laser Melting, and an additive manufacture technique, were used to manufacture the " bed of nails” flyer. The experiments were performed at the impact velocities of 348 m/s using the 57 mm gas gun. The measured free surface velocity profile agrees well with the simulation results.
-
表 1 飞片和靶板材料本构和状态方程参数
Table 1. Flyer and target material parameters
E/GPa $\nu$ ρ/(kg·m−3) A/MPa B/MPa n c m $\mathop {\dot \varepsilon }\nolimits_0 $ Tm/K T0/K 210 0.3 7 830 792 510 0.26 0.014 1.03 1 1 800 293 -
[1] LORENZ K T, EDWARDS M J, JANKOWSKI A F, et al. High pressure, quasi-isentropic compression experiments on the Omega laser [J]. High Energy Density Physics, 2006, 2(3): 113–125. DOI: 10.1016/j.hedp.2006.08.001. [2] CHHABILADS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher-capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17(1−3): 183–194. DOI: 10.1016/0734-743X(95)99845-I. [3] THORNHILL T F, CHHABILDAS L C, REINHART W D, et al. Particle launch 19km/s for micro-meteoroid simulation using enhance three-stage light gas gun hypervelocity launcher techniques [J]. International Journal of Impact Engineering, 2006, 33(1−12): 799–811. DOI: 10.1016/j.ijimpeng.2006.09.015. [4] MARTIN L P, PATTERSON J R, ORLIKOWSKI D, et al. Application of tape-cast graded impedance impactors for light-gas gun experiments [J]. Journal of Applied Physics, 2007, 102(2): 023507. DOI: 10.1063/1.2756058. [5] YEP S J, BELOF J L, ORLIKOWSKI D A, et al. Fabrication and application of high impedance graded density impactors in light gas gun experiments [J]. Review of Scientific Instruments, 2013, 84(10): 103909. DOI: 10.1063/1.4826565. [6] 柏劲松, 李蕾. 实现应变率为105~106 s−1的阻抗梯度飞片复杂加载波形计算分析 [J]. 爆炸与冲击, 2015, 35(6): 792–798. DOI: 10.11883/1001-1455(2015)06-0792-07BAI Jinsong, LI Lei. Computational analysis of complex loading waveforms of impedance gradient flyers with strain rate of 105—106 s−1 [J]. Explosion and Shock Waves, 2015, 35(6): 792–798. DOI: 10.11883/1001-1455(2015)06-0792-07 [7] 沈强, 张联盟, 王传彬, 等. 梯度飞片材料的波阻抗分布设计与优化 [J]. 物理学报, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020SHEN Qiang, ZHANG Lianmeng, WANG Chuanbin, et al. Design and optimization of wave impedance distribution of gradient flyer materials [J]. Acta Physica Sinica, 2003, 52(7): 1663–1667. DOI: 10.3321/j.issn:1000-3290.2003.07.020 [8] LUO G Q, BAI J S, TAN H, et al. Characterizations of Mg-W system graded-density impactors for complex loading experiments [J]. Metallurgical and Materials Transactions A, 2010, 41(9): 2389–2395. DOI: 10.1007/s11661-010-0309-0. [9] TAYLOR P, Goff M, HAZELL P J, et al. Ramp wave generation using graded areal density ceramic flyers and the plate impact technique [J]. Journal of Physics: Conference Series, 2014, 500: 142016. DOI: 10.1088/1742-6596/50/14/142016. [10] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1–4. DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001LU Bingheng, LI Dichen. Development of Additive Manufacturing (3D Printing) Technology [J]. Mechanical Manufacturing and Automation, 2013, 42(4): 1–4. DOI: 10.19344/j.cnki.issn1671-5276.2013.04.001 [11] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术 [J]. 材料工程, 2016, 44(2): 122–128. DOI: 10.11868/j.issn.1001-4381.2016.02.019ZHANG Xuejun, TANG Sizhen, YAN Hengyue, et al. Research status and key technologies of 3D printing technology [J]. Materials Engineering, 2016, 44(2): 122–128. DOI: 10.11868/j.issn.1001-4381.2016.02.019 [12] 王礼立, 胡时胜. 锥杆中应力波传播的放大特性 [J]. 宁波大学学报, 1988, 2(1): 78–87WANG Lili, HU Shisheng. Amplification characteristics of stress wave propagation in cones [J]. Journal of Ningbo University, 1988, 2(1): 78–87 [13] 罗鑫, 白二雷. 变截面杆共轴撞击数值分析及其应用前景 [J]. 高压物理学报, 2012, 26(6): 715–720. DOI: 10.11858/gywlxb.2012.06.018LUO Xin, BAI Erlei. Numerical analysis of the common-axis impact of variable-section bar and its application prospect [J]. Journal of High Pressure Physics, 2012, 26(6): 715–720. DOI: 10.11858/gywlxb.2012.06.018 [14] 陶俊林, 张方举. 变截面弹丸在分离式Hopkinson压杆中的应用 [J]. 实验力学, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025TAO Junlin, ZHANG Fangju. Application of variable section projectile in separate Hopkinson pressure bar [J]. Experimental Mechanics, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025