冲击载荷下径向密度排布对泡沫金属力学性能影响的研究

王根伟 刘冕 宋辉 王彬

王根伟, 刘冕, 宋辉, 王彬. 冲击载荷下径向密度排布对泡沫金属力学性能影响的研究[J]. 爆炸与冲击, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403
引用本文: 王根伟, 刘冕, 宋辉, 王彬. 冲击载荷下径向密度排布对泡沫金属力学性能影响的研究[J]. 爆炸与冲击, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403
WANG Genwei, LIU Mian, SONG Hui, WANG Bin. Influence of radial density arrangement on mechanical properties of metal foam under impact loading[J]. Explosion And Shock Waves, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403
Citation: WANG Genwei, LIU Mian, SONG Hui, WANG Bin. Influence of radial density arrangement on mechanical properties of metal foam under impact loading[J]. Explosion And Shock Waves, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403

冲击载荷下径向密度排布对泡沫金属力学性能影响的研究

doi: 10.11883/bzycj-2019-0403
基金项目: 国家自然科学基金(11872265);山西省自然科学基金(201901D2111087)
详细信息
    作者简介:

    王根伟(1974- ),男,博士,副教授,gwang@tyut.edu.cn

  • 中图分类号: O347.3

Influence of radial density arrangement on mechanical properties of metal foam under impact loading

  • 摘要: 参照层状密度梯度泡沫模型实现方法,利用3D-Voronoi技术设计了新型径向密度梯度泡沫模型,并用有限元软件,对它在不同冲击载荷下的力学行为进行数值模拟。研究冲击速度、密度梯度和平均相对密度对金属泡沫冲击端、支撑端应力和能量吸收能力的影响,发现:径向正梯度泡沫与层状正、负梯度泡沫相比,其两端的应力值均较小,可同时保护冲击端、支撑端物体;径向负梯度泡沫两端应力变化幅度较小,能够保证物体受力稳定;几种泡沫金属的能量吸收能力在不同冲击速度下发生交替变化。对于径向梯度泡沫,能量吸收能力对密度梯度大小不敏感,对梯度方向敏感,径向负梯度泡沫的能量吸收能力始终大于径向正梯度泡沫;平均相对密度越大,径向正、负梯度泡沫两端应力越大、吸能效果越好。
  • 图  1  密度梯度泡沫模型

    Figure  1.  Density gradient foam models

    图  2  层状和径向的梯度泡沫

    Figure  2.  Layered and radial graded foams

    3  应变云图

    3.  Strain distributions

    图  4  4种梯度泡沫冲击端和支撑端的名义应力应变曲线

    Figure  4.  Nominal stress-strain curves of impact end and support end of four graded foams

    图  5  4种梯度泡沫冲击端和支撑端的最大应力和应力标准差

    Figure  5.  Maximum stresses and stress standard deviations of impact end and support end of four graded foams

    图  6  不同冲击速度下4种梯度泡沫的能量吸收能力

    Figure  6.  Energy absorption capacities of four graded foams at different impact velocities

    图  7  在不同密度梯度下径向梯度泡沫的名义应力应变曲线

    Figure  7.  Nominal stress-strain curves of radial graded foams with different density gradients

    图  8  在不同密度梯度下径向梯度泡沫的能量吸收能力

    Figure  8.  Energy absorption capacities of radial graded foams with different density gradients

    图  9  在不同相对密度下径向梯度泡沫的名义应力应变曲线

    Figure  9.  Nominal stress-strain curves of radial graded foams with different relative densities

    10  在不同相对密度下径向梯度泡沫的能量吸收特性

    10.  Energy absorption per mass of radial graded foams with different relative densities

    表  1  模型材料参数

    Table  1.   Model material parameters

    泡沫模型平均相对密度$\overline\mu $密度梯度γ
    层状正梯度0.120.8
    层状负梯度0.12−0.8
    径向正梯度0.12, 0.090.8, 0.4
    径向负梯度0.12, 0.09−0.8, −0.4
    下载: 导出CSV

    表  2  4种梯度泡沫的能量吸收能力

    Table  2.   Energy absorption capacities of four graded foams

    泡沫模型W/MPa
    v=30 m/sv=80 m/sv=200 m/s
    $\overline\varepsilon $=0.2$\overline\varepsilon $=0.5$\overline\varepsilon $=0.8$\overline\varepsilon $=0.2$\overline\varepsilon $=0.5$\overline\varepsilon $=0.8$\overline\varepsilon $=0.2$\overline\varepsilon $=0.5$\overline\varepsilon $=0.8
    层状正梯度0.551.984.220.822.735.362.367.1813.51
    层状负梯度0.731.964.241.723.144.784.419.4312.67
    径向正梯度0.622.003.971.003.064.912.848.3412.63
    径向负梯度0.912.254.221.353.145.363.748.6013.89
    下载: 导出CSV
  • [1] BEALS J T, THOMPSON M S. Density gradient effects on aluminium foam compression behaviour [J]. Journal of Materials Science, 1997, 32(13): 3595–3600. DOI: 10.1023/A:1018670111305.
    [2] GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4−5): 979–982. DOI: 10.1016/j.matlet.2006.06.033.
    [3] BROTHERS A H, DUNAND D C. Mechanical properties of a density-graded replicated aluminum foam [J]. Materials Science and Engineering: A, 2008, 489(1−2): 439–443. DOI: 10.1016/j.msea.2007.11.076.
    [4] BRUCK H A. A one-dimensional model for designing functionally graded materials to manage stress waves [J]. International Journal of Solids and Structures, 2000, 37(44): 6383–6395. DOI: 10.1016/S0020-7683(99)00236-X.
    [5] AJDARI A, CANAVAN P, NAYEB-HASHEMI H, et al. Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation [J]. Materials Science and Engineering: A, 2009, 499(1−2): 434–439. DOI: 10.1016/j.msea.2008.08.040.
    [6] ZHANG J J, WEI H, WANG Z H, et al. Dynamic crushing of uniform and density graded cellular structures based on the circle arc model [J]. Latin American Journal of Solids and Structures, 2015, 12(6): 1102–1125. DOI: 10.1590/1679-78251630.
    [7] LIANG M Z, ZHANG G D, LU F Y, et al. Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm [J]. Thin-Walled Structures, 2017, 112: 98–106. DOI: 10.1016/j.tws.2016.12.016.
    [8] 王根伟, 王江龙. 负梯度闭孔泡沫金属的力学性能分析 [J]. 固体力学学报, 2017, 38(1): 85–92. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.01.008.

    WANG G W, WANG J L. Mechanical properties of closed-cell metal foam with negative density gradient under impact loading [J]. Chinese Journal of Solid Mechanics, 2017, 38(1): 85–92. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.01.008.
    [9] DING Y Y, ZHENG Z J, WANG Y G, et al. Impact resistance and design of graded cellular cladding [J]. International Journal of Applied Mechanics, 2018, 10(10): 1850107. DOI: 10.1142/S1758825118501077.
    [10] LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals [J]. International Journal of Solids and Structures, 2009, 46(22−23): 3988–3998. DOI: 10.1016/j.ijsolstr.2009.07.024.
    [11] MA G W, YE Z Q, SHAO Z S. Modeling loading rate effect on crushing stress of metallic cellular materials [J]. International Journal of Impact Engineering, 2009, 36(6): 775–782. DOI: 10.1016/j.ijimpeng.2008.11.013.
    [12] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering: A, 2013, 561: 352–361. DOI: 10.1016/j.msea.2012.10.026.
    [13] CUI L, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1−2): 215–225. DOI: 10.1016/j.msea.2008.12.011.
    [14] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. DOI: 10.11883/1001-1455(2013)02-0163-06.

    WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. DOI: 10.11883/1001-1455(2013)02-0163-06.
    [15] WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001. DOI: 10.1063/2.1303101.
    [16] YANG J, WANG S L, ZHENG Z J, et al. Impact resistance of graded cellular metals using cell-based finite element models [J]. Key Engineering Materials, 2016, 703: 400–405. DOI: 10.4028/www.scientific.net/KEM.703.400.
    [17] CHEN D, KITIPORNCHAI S, YANG J. Dynamic response and energy absorption of functionally graded porous structures [J]. Materials & Design, 2018, 140: 473–487. DOI: 10.1016/j.matdes.2017.12.019.
    [18] LAN X K, FENG S S, HUANG Q, et al. Blast response of continuous-density graded cellular material based on the 3D Voronoi model [J]. Defence Technology, 2018, 14(5): 443–440. DOI: 10.1016/j.dt.2018.06.003.
    [19] 常白雪, 郑志军, 赵凯, 等. 具有恒定冲击载荷的梯度泡沫金属材料设计 [J]. 爆炸与冲击, 2019, 39(4): 3–11. DOI: 10.11883/bzycj-2018-0431.

    CHANG B X, ZHENG Z J, ZHAO K, et al. Design of gradient foam metal materials with a constant impact load [J]. Explosion and Shock Waves, 2019, 39(4): 3–11. DOI: 10.11883/bzycj-2018-0431.
    [20] ZENG H B, PATTOFATTO S, ZHAO H, et al. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680–688. DOI: 10.1016/j.ijmecsci.2009.11.012.
    [21] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3−4): 506–516. DOI: 10.1016/j.ijsolstr.2010.10.018.
    [22] ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient [J]. Journal of Sandwich Structures & Materials, 2014, 16(2): 125–147. DOI: 10.1177/1099636213509099.
    [23] ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. DOI: 10.1016/j.mechmat.2015.11.014.
    [24] ZHU H X, WINDLE A H. Effects of cell irregularity on the high strain compression of open-cell foams [J]. Acta Materialia, 2002, 50(5): 1041–1052. DOI: 10.1016/S1359-6454(01)00402-5.
    [25] 曹国剑, 张一思, 刘东戎, 等. 制备梯度多孔材料的方法: CN101418391A [P]. 2009-04-29.
    [26] 李妍妍, 郑志军, 虞吉林, 等. 闭孔泡沫金属变形模式的有限元分析 [J]. 爆炸与冲击, 2014, 34(4): 464–470. DOI: 10.11883/1001-1455(2014)04-0464-07.

    LI Y Y, ZHENG Z J, YU J L, et al. Finite element analysis on deformation modes of closed-cell metallic foam [J]. Explosion and Shock Waves, 2014, 34(4): 464–470. DOI: 10.11883/1001-1455(2014)04-0464-07.
    [27] WANG J L, LI X, WANG G W. Deformation modes of the graded closed-cell foam under impact loading [C] // Proceedings of 2016 International Conference on Applied Mechanics, Electronics and Mechatronics Engineering. Beijing, 2016. DOI: 10.12783/dtetr/ameme2016/5803.
    [28] KOOISTRA G W, DESHPANDE V S, WADLEY H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium [J]. Acta Materialia, 2004, 52(14): 4229–4237. DOI: 10.1016/j.actamat.2004.05.039.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  3693
  • HTML全文浏览量:  1616
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 修回日期:  2020-02-08
  • 网络出版日期:  2020-05-25
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回