混凝土高压状态方程实验与数值模拟研究

孙玉祥 王杰 武海军 周婕群 李金柱 皮爱国 黄风雷

孙玉祥, 王杰, 武海军, 周婕群, 李金柱, 皮爱国, 黄风雷. 混凝土高压状态方程实验与数值模拟研究[J]. 爆炸与冲击, 2020, 40(12): 121401. doi: 10.11883/bzycj-2020-0002
引用本文: 孙玉祥, 王杰, 武海军, 周婕群, 李金柱, 皮爱国, 黄风雷. 混凝土高压状态方程实验与数值模拟研究[J]. 爆炸与冲击, 2020, 40(12): 121401. doi: 10.11883/bzycj-2020-0002
SUN Yuxiang, WANG Jie, WU Haijun, ZHOU Jiequn, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment and simulation on high-pressure equation of state for concrete[J]. Explosion And Shock Waves, 2020, 40(12): 121401. doi: 10.11883/bzycj-2020-0002
Citation: SUN Yuxiang, WANG Jie, WU Haijun, ZHOU Jiequn, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment and simulation on high-pressure equation of state for concrete[J]. Explosion And Shock Waves, 2020, 40(12): 121401. doi: 10.11883/bzycj-2020-0002

混凝土高压状态方程实验与数值模拟研究

doi: 10.11883/bzycj-2020-0002
基金项目: 国家自然科学基金联合基金(U1730128);国家自然科学基金(11390362,11572048)
详细信息
    作者简介:

    孙玉祥(1993- ),男,硕士,1762566576@qq.com

    通讯作者:

    武海军(1974- ),男,博士,教授,wuhj@bit.edu.cn

  • 中图分类号: O383

Experiment and simulation on high-pressure equation of state for concrete

  • 摘要: 为研究高压下混凝土冲击压缩特性以及确定HJC本构模型状态方程参数,采用$\varnothing $58 mm火炮加载技术和多普勒探针系统(Doppler probe system,DPS)测速技术,对抗压强度为26.5 MPa(C25)和42.1 MPa(C40)的混凝土进行反向平板撞击实验研究与数值模拟。DPS探针记录TU1无氧铜靶自由面粒子速度历史,根据一维应变弹塑性波理论,计算撞击压力,拟合得到2~11 GPa高压条件下混凝土波速与粒子速度(us-up)、压力与体积应变(p-μ)关系。实验结果表明:高压条件下,混凝土波速-粒子速度呈线性关系;两种初始密度、孔隙率相近,强度不同的混凝土波速-粒子速度、压力-体积应变关系存在明显差异,相同压力下,混凝土试件强度越高,体积应变越小。基于实验结果,确定了两种强度混凝土HJC本构模型状态方程参数,利用LS-DYNA动力有限元分析软件对平板撞击实验进行了数值模拟,靶板自由面粒子速度历史与实验曲线吻合较好,仿真结果表明混凝土中冲击波的追赶卸载现象仅存在于低速撞击条件下。
  • 图  1  飞片撞击实验装置示意图

    Figure  1.  Flyer-impact experimental device

    图  2  DPS测速装置与靶室布置

    Figure  2.  DPS and target room arrangement

    图  3  混凝土飞片试件

    Figure  3.  Concrete flyer specimen

    图  4  飞片与弹托

    Figure  4.  Flyer and sabot

    图  5  TU1无氧铜靶片试件

    Figure  5.  TU1 copper specimen

    图  6  冲击波传播X-t

    Figure  6.  Shock wave propagation

    图  7  TU1靶板自由面粒子速度历史示意图

    Figure  7.  Particle velocity history curve on TU1 target

    图  8  6路DPS探针原始影像图

    Figure  8.  Images by six DPS probes

    图  9  速度为989 m/s的C40混凝土飞片撞击TU1靶板的自由面粒子速度历史

    Figure  9.  Particle velocity of TU1 free surface in C40 concrete flyer impact test at 989 m/s

    图  10  C25混凝土飞片撞击TU1靶板自由面粒子速度历史

    Figure  10.  Particle velocity of TU1 free surface in C25 concrete flyer impact tests

    图  11  C40混凝土飞片撞击TU1靶板自由面粒子速度历史

    Figure  11.  Particle velocity of TU1 free surface in C40 concrete flyer impact tests

    图  12  混凝土波速-粒子速度(us-up)关系拟合

    Figure  12.  Shock velocity and particle velocity linear fitting

    图  13  混凝土压力-密度

    Figure  13.  Pressure-density data for concrete

    图  14  混凝土压力-体积应变

    Figure  14.  Pressure-volumetric strain data for concrete

    图  15  HJC模型状态方程[2]

    Figure  15.  EOS of the HJC model

    图  16  数值模拟模型

    Figure  16.  Numerical simulation model

    图  17  C25混凝土粒子速度数值模拟与实验结果对比

    Figure  17.  Comparison of simulation and test results for C25 concrete

    图  18  C40混凝土粒子速度数值模拟与实验结果对比

    Figure  18.  Comparison of simulation and test results for C40 concrete

    图  19  速度为479 m/s C25混凝土飞片压力时程曲线

    Figure  19.  Pressure-time curves of C25 flyer at 479 m/s

    图  20  速度为479 m/s C25混凝土飞片压力云图

    Figure  20.  Pressure cloud in C25 concrete flyer at 479 m/s

    图  21  速度为1017 m/s C25混凝土飞片压力时程曲线

    Figure  21.  Pressure-time curve of C25 flyer at 1017 m/s

    表  1  混凝土平板撞击实验数据

    Table  1.   Flyer-impact test data of concrete

    编号类别v0/(m·s−1)up1/(m·s−1)up2/(m·s−1)us2/(m·s−1)σH/MPa
    C25v1017C251017343.9845.03469.76450.4
    C25v1259C251259441.01038.53682.88414.2
    C25v1523C251523575.61235.24136.211240.0
    C25v479C25479112.6422.72177.62025.1
    C40v834C40834276.3695.83383.85121.2
    C40v989C40989355.5811.33786.76681.6
    C40v1279C401279476.11040.94037.49140.6
    C40v1484C401484580.61193.74370.911348.0
    下载: 导出CSV

    表  2  混凝土HJC模型状态方程参数

    Table  2.   EOS parameters of the HJC model for concrete

    混凝土K1/GPaK2/GPaK3/GPapL/MPaμL
    C25 56.34−363.961689.500.90.171
    C40137.37−971.903483.431.20.187
    下载: 导出CSV

    表  3  混凝土HJC模型主要参数

    Table  3.   Parameters of HJC model for concrete

    混凝土ρ/(g·cm−3)G/GPafc/MPaT/MPapC/MPaμC/10−3
    C252.2029.51726.53.198.830.696
    C402.17711.7942.14.0214.030.893
     注:G为剪切模量,fc为单轴抗压强度,T为最大静水拉伸强度,pC为压碎压力,μC为压碎体积应变。
    下载: 导出CSV
  • [1] 高飞, 王明洋, 张先锋, 等. 水泥砂浆的平板撞击实验与高压状态方程研究 [J]. 振动与冲击, 2018, 37(12): 41–47. DOI: 10.13465/j.cnki.jvs.2018.12.007.

    GAO F, WANG M Y, ZHANG X F, et al. A study on planar impact and equation of state for cement mortar [J]. Journal of Vibration and Shock, 2018, 37(12): 41–47. DOI: 10.13465/j.cnki.jvs.2018.12.007.
    [2] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain rates and high pressure [C] // The 14th International Symposium on Ballistics. Quebec, Canada: American Defense Preparedness Association, 1995: 591−600.
    [3] GRADY D E. Impact compression properties of concrete [C] // The 6th International Symposium on Interaction of Nonnuclearmunitions with Structures. Panama City, Florida, 1993:172−175.
    [4] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [5] GEBBEKEN N, GREULICH S, PIETZSCH A. Equation of state data for concrete determined by full-scale experiments and flyer-plate-impact tests [C] // European Conference on Computational Mechanics. Cracow Poland, 2001.
    [6] RIEDEL W, WICKLEIN M, THOMA K. Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35(3): 155–171. DOI: 10.1016/j.ijimpeng.2007.02.001.
    [7] RIEDEL W, THOMA K, HIERMAIER S. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999: 315-322
    [8] 王永刚, 张远平, 王礼立. C25混凝土冲击绝热关系和Grüneisen型状态方程的实验研究 [J]. 物理学报, 2008, 57(12): 7789–7793. DOI: 10.7498/aps.57.7789.

    WANG Y G, ZHANG Y P, WANG L L. Experimental study on the shock Hugoniot relationship and the Grüneisen-type equation of state for C25 concrete [J]. Acta Physica Sinica, 2008, 57(12): 7789–7793. DOI: 10.7498/aps.57.7789.
    [9] GRADY D E. Shock equation of state properties of concrete[R]. Office of Scientific & Technical Information Technical Reports, 1996. DOI: 10.2495/SUSI960371.
    [10] KIPP M E, CHHABILDAS L C, REINHART W D. Elastic shock response and spall strength of concrete[C]// AIP Conference. The tenth American Physical Society Topical Conference on Shock Compression of Condensed Matter. Amherst, Massachusetts, 1998: 557−560. DOI: 10.1063/1.55664.
    [11] HALL C A, CHHABILDAS L C, REINHART W D. Shock Hugoniot and release in concrete with different aggregate sizes from 3 to 23 GPa [J]. International Journal of Impact Engineering, 1999, 23(1): 341–351. DOI: 10.1016/S0734-743X(99)00085-8.
    [12] TSEMBELIS K, MILLETT J C F, PROUD W G, et al. The shock Hugoniot properties of cement paste up to 5GPa [J]. AIP Conference Proceedings, 2000, 505(1): 1267–1270. DOI: 10.1063/1.1303692.
    [13] TSEMBELIS K, PROUD W G, WILLMOTT G R, et al. The shock Hugoniot properties of cement paste & mortar up to 18 GPa [J]. AIP Conference Proceedings, 2004, 706(1): 1488–1491. DOI: 10.1063/1.1780520.
    [14] 蒋国平, 浣石, 郝洪, 等. 钢纤维高强混凝土材料的气体炮试验研究 [J]. 物理学报, 2013(1): 351–356. DOI: CNKI:SUN:WLXB.0.2013-01-054.

    JIANG G P, HUAN S, HAO H, et al. Performance of steel reinforced high strength concrete investigated in the gas gun experiment [J]. Acta Physica Sinica, 2013(1): 351–356. DOI: CNKI:SUN:WLXB.0.2013-01-054.
    [15] 马晓青. 冲击动力学[M]. 北京: 北京理工大学出版社, 1992: 168−169.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  1637
  • HTML全文浏览量:  1285
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 修回日期:  2020-06-09
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回