钢筋混凝土排架结构的抗爆破坏等级

张帝 杨军 曾丹 陈泰年 高金明 汤宇

张帝, 杨军, 曾丹, 陈泰年, 高金明, 汤宇. 钢筋混凝土排架结构的抗爆破坏等级[J]. 爆炸与冲击, 2020, 40(12): 121405. doi: 10.11883/bzycj-2020-0012
引用本文: 张帝, 杨军, 曾丹, 陈泰年, 高金明, 汤宇. 钢筋混凝土排架结构的抗爆破坏等级[J]. 爆炸与冲击, 2020, 40(12): 121405. doi: 10.11883/bzycj-2020-0012
ZHANG Di, YANG Jun, ZENG Dan, CHEN Tainian, GAO Jinming, TANG Yu. Damage grades of reinforced concrete bent structures against blast[J]. Explosion And Shock Waves, 2020, 40(12): 121405. doi: 10.11883/bzycj-2020-0012
Citation: ZHANG Di, YANG Jun, ZENG Dan, CHEN Tainian, GAO Jinming, TANG Yu. Damage grades of reinforced concrete bent structures against blast[J]. Explosion And Shock Waves, 2020, 40(12): 121405. doi: 10.11883/bzycj-2020-0012

钢筋混凝土排架结构的抗爆破坏等级

doi: 10.11883/bzycj-2020-0012
详细信息
    作者简介:

    张 帝(1991- ),男,博士研究生,dizhang@bit.edu.cn

    通讯作者:

    杨 军(1960- ),男,博士,教授, yangj@bit.edu.cn

  • 中图分类号: O383; TU279

Damage grades of reinforced concrete bent structures against blast

  • 摘要: 为了研究钢筋混凝土排架结构在大当量爆炸冲击波下的破坏规律,依据最大TNT当量为3 t的爆炸试验,对排架主体结构的抗爆破坏等级进行数值模拟研究。通过量纲分析得到1/2缩比模型的荷载参数和结构尺寸。基于Abaqus有限元软件,利用CONWEP方法实现爆炸加载,分别计算装药0.5 t爆距33 m和装药3 t爆距33 m两种工况下排架结构的破坏形态,并与试验结果进行对比。进一步通过控制药量和距离,计算不同超压和冲量下缩比模型的破坏形态。研究结果表明,排架的关键破坏特征为中间承重柱的倾覆转动;数值计算与试验破坏形态吻合较好,特征位移和特征转角的最大相对误差分别为5.6%和4.6%。以承重柱的倾覆角作为划分依据,将计算结果分为3种破坏等级,拟合得到的超压-冲量曲线和药量-距离曲线可用于厂房安全距离和仓库容量设计以及意外爆炸下的破坏程度预估。
  • 图  1  钢筋混凝土排架缩比模型

    Figure  1.  The scaled model for the reinforced concrete bent structure

    图  2  屋架

    Figure  2.  Roof frame

    图  3  钢筋混凝土梁柱

    Figure  3.  Reinforced concrete column and beam

    图  4  立柱基础及周围土的几何参数

    Figure  4.  Dimensions of column foundation and surrounding soil

    图  5  CONWEP爆炸加载示意图

    Figure  5.  Schematic blast load in CONWEP

    图  6  CONWEP加载超压时程曲线

    Figure  6.  Overpressure-time curves calculated by CONWEP

    图  7  CONWEP加载冲量时程曲线

    Figure  7.  Impulse-time curves calculated by CONWEP

    图  8  试验系统布置

    Figure  8.  Test system arrangement

    图  9  缩比试验宏观破坏形态

    Figure  9.  Macroscopic destruction in scaled tests

    图  10  迎爆面中间立柱1 m高处的位移时程曲线(0.5 t-33 m)

    Figure  10.  Displacement-time curves at the height of 1 m of the middle column on the blasting face (0.5 t-33 m)

    图  11  试验与模拟宏观破坏对比

    Figure  11.  Comparison of macroscopic destructions between test and simulation

    图  12  试验与模拟局部破坏对比

    Figure  12.  Comparison of local destructions between test and simulation

    图  13  试验与模拟立柱转角对比

    Figure  13.  Comparison of rotation angles of columns between test and simulation

    图  14  破坏过程

    Figure  14.  Destruction process

    图  15  钢筋混凝土排架主体结构的破坏等级划分p-I曲线

    Figure  15.  p-I curves of damage grades division for the reinforced concrete bent main structure

    图  16  钢筋混凝土排架主体结构的破坏等级划分Q-R曲线

    Figure  16.  Q-R curves of damage grades division for the reinforced concrete bent main structure

    表  1  Q235B钢的弹塑性参数

    Table  1.   Elastoplastic parameters of steel Q235B

    ρ/(kg·m−3) E/GPa μ A/MPa B/MPa n m C $ {\dot{\mathrm{\varepsilon }}}_{0} $/s−1
    7835.5 200.6 0.259 314 527.5 0.436 0.757 0.02 0.001
    下载: 导出CSV

    表  2  HRB400钢的弹塑性参数

    Table  2.   Elastoplastic parameters of steel HRB400

    ρ/(kg·m−3) E/GPa μ A/MPa B/MPa n m C $ {\dot{\mathrm{\varepsilon }}}_{0} $/s−1
    7766 200.5 0.241 476.2 719.8 0.44 0.757 0.014 0.001
    下载: 导出CSV
  • [1] Department of Defense. Design of buildings to resist progressive collapse: UFC4-023-03 [S]. Washington: U S Department of Defense, 2005: 1−232.
    [2] WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading [J]. International Journal of Impact Engineering, 2012, 49: 158–164. DOI: 10.1016/j.ijimpeng.2012.03.010.
    [3] YAO S J, ZHANG D, LU F Y, et al. A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading [J]. International Journal of Impact Engineering, 2017, 102: 36–46. DOI: 10.1016/j.ijimpeng.2016.12.003.
    [4] 武海军, 黄风雷, 陈利, 等. 动能弹侵彻钢筋混凝土相似性分析 [J]. 兵工学报, 2007, 28(3): 276–280. DOI: 10.3321/j.issn: 1000-1093.2007.03.005.

    WU H J, HUANG F L, CHEN L, et al. Similarity law analyses of penetration behavior in reinforced concrete [J]. Acta Armamentarii, 2007, 28(3): 276–280. DOI: 10.3321/j.issn: 1000-1093.2007.03.005.
    [5] 杨亚东, 李向东, 王晓鸣, 等. 钢筋混凝土结构内爆炸相似模型试验研究 [J]. 南京理工大学学报, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.

    YANG Y D, LI X D, WANG X M, et al. Experimental study on similarity model of reinforced concrete structure under internal explosion [J]. Journal of Nanjing University of Science and Technology, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.
    [6] JAYASOORIYA R, THAMBIRATNAM D P, PERERA N J, et al. Blast and residual capacity analysis of reinforced concrete framed buildings [J]. Engineering Structures, 2011, 33(12): 3483–3495. DOI: 10.1016/j.engstruct.2011.07.011.
    [7] CARTA G, STOCHINO F. Theoretical models to predict the flexural failure of reinforced concrete beams under blast loads [J]. Engineering Structures, 2013, 49: 306–315. DOI: 10.1016/j.engstruct.2012.11.008.
    [8] SHI Y C, HAO H, Li Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [9] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津: 天津大学, 2009: 1−8.
    [10] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D]. 长沙: 国防科学技术大学, 2012: 1−7.
    [11] WANG W, ZHANG D, LU F Y, et al. The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs [J]. Structural Engineering and Mechanics, 2012, 42(3): 363–381. DOI: 10.12989/sem.2012.42.3.363.
    [12] 倪晋峰. 单层球面网壳基于CONWEP外爆响应分析及试验设计[D]. 哈尔滨: 哈尔滨工业大学, 2012: 13−19.
    [13] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2017: 1−284.
    [14] 中华人民共和国住房和城乡建设部. 钢结构设计标准规范:GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2018: 1−226.
    [15] 任光. 爆炸载荷下建构筑物连续倒塌数值模拟[D]. 北京: 北京理工大学, 2016: 1−6.
    [16] 郭春, 彭振斌. 建筑抗震中单桩摩阻力动力效应分析 [J]. 湖南大学学报(自然科学版), 2015, 42(3): 57–62. DOI: 10.16339/j.cnki.hdxbzkb.2015.03.009.

    GUO C, PENG Z B. Analysis for the dynamic effect of friction forces of single pile [J]. Journal of Hunan University (Natural Sciences), 2015, 42(3): 57–62. DOI: 10.16339/j.cnki.hdxbzkb.2015.03.009.
    [17] 李世平, 张珂, 程龙. 基于ABAQUS软件研究载体桩在焦作某工程应用 [J]. 水利与建筑工程学报, 2018, 16(1): 28–35. DOI: 10.3969/j.issn.1672-1144.2018.01.006.

    LI S P, ZHANG K, CHENG L. Research on application of ram-compacted piles with bearing base in Jiaozuo based on ABAQUS software [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(1): 28–35. DOI: 10.3969/j.issn.1672-1144.2018.01.006.
    [18] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [19] CASTEDO R, SEGARRA P, ALAÑON A, et al. Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation [J]. International Journal of Impact Engineering, 2015, 86: 145–156. DOI: 10.1016/j.ijimpeng.2015.08.004.
    [20] SOUTIS C, MOHAMED G, HODZIC A. Modelling the structural response of GLARE panels to blast load [J]. Composite Structures, 2011, 94(1): 267–276. DOI: 10.1016/j.compstruct.2011.06.014.
    [21] DU H, LI Z X. Numerical analysis of dynamic behavior of RC slabs under blast loading [J]. Transactions of Tianjin University, 2009, 15(1): 61–64. DOI: 10.1007/s12209-009-0012-7.
    [22] 杨军, 张帝, 任光. 基于CONWEP动态加载的建筑物爆破拆除数值模拟 [J]. 工程爆破, 2016, 22(5): 1–6, 91. DOI: 10.3969/j.issn.1006-7051.2016.05.001.

    YANG J, ZHANG D, REN G. Numerical simulation of blasting demolition of buildings and structures based on CONWEP dynamic loading [J]. Engineering Blasting, 2016, 22(5): 1–6, 91. DOI: 10.3969/j.issn.1006-7051.2016.05.001.
    [23] Department of Defense. Structures to resist the effects of accidental explosions: UFC3-340-02[S]. Washington: U S Department of Defense, 2008: 1042−1280.
    [24] 李天华. 爆炸荷载下钢筋混凝土板的动态响应及损伤评估[D]. 西安: 长安大学, 2012: 100−104.
    [25] WEI X Y, HUANG T, LI N. Numerical derivation of pressure-impulse diagrams for unreinforced brick masonry walls [J]. Advanced Materials Research, 2011, 368-373: 1435–1439. DOI: 10.4028/www.scientific.net/AMR.368-373.1435.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1831
  • HTML全文浏览量:  787
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 修回日期:  2020-05-21
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回